Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
YIN Haoan, TANG Hong, LI Xiongyao, YU Wen. Occurrence and Infrared Absorption Spectra of Martian Water (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1086-1105 doi: 10.11728/cjss2024.06.2023-0118
Citation: YIN Haoan, TANG Hong, LI Xiongyao, YU Wen. Occurrence and Infrared Absorption Spectra of Martian Water (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1086-1105 doi: 10.11728/cjss2024.06.2023-0118

Occurrence and Infrared Absorption Spectra of Martian Water

doi: 10.11728/cjss2024.06.2023-0118 cstr: 32142.14.cjss.2023-0118
  • Received Date: 2023-10-26
  • Rev Recd Date: 2023-12-13
  • Available Online: 2024-01-31
  • After nearly half a century of exploration, the researches of Martian water have made important achievements, which provides essential information for understanding the historical information of Martian water and the evolution of the Martian environment, especially arousing the enthusiasm of human beings to search for life on Mars. The study of the occurrence and host minerals of Martian water is of great significance for understanding the composition of Martian surface materials, the evolution of Martian environment and climate, and the livability of life. Infrared spectroscopy is an important method to identify the occurrence of water on the Martian surface and the host minerals. At present, water vapor, water ice and various aqueous substances such as sulfates, clay minerals, hydroxides and hydrated silica have been identified on the Martian surface, indicating that there were several periods of aqueous activities in different water environments in Martian history. In this paper, the occurrence of Martian water and the information of Martian historical environment are summarized, and the infrared spectral characteristics of different water-bearing minerals and the main influencing factors including the type of host minerals, temperature, grain size and mixture are synthetic analyzed. Finally, the changes of infrared spectral absorption characteristics of groups such as H2O and OH are generalized. With the help of China's ongoing exploration of Tianwen-1 and future Tianwen-3 missions, breakthroughs can be made in understanding the origin and evolution of Martian water and the habitability of Mars.

     

  • loading
  • [1]
    SPINRAD H, MUNCH G, KAPLAN L D. The detection of water vapor on Mars[J]. Astrophysical Journal, 1963, 137: 1319-1321 doi: 10.1086/147613
    [2]
    FARMER C B, DAVIES D W, HOLLAND A L, et al. Mars: water vapor observations from the Viking orbiters[J]. Journal of Geophysical Research, 1977, 82(28): 4225-4248 doi: 10.1029/JS082i028p04225
    [3]
    JAKOSKY B M, FARMER C B. The seasonal and global behavior of water vapor in the Mars atmosphere: complete global results of the Viking atmospheric water detector experiment[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B4): 2999-3019 doi: 10.1029/JB087iB04p02999
    [4]
    WHITEWAY J A, KOMGUEM L, DICKINSON C, et al. Mars water-ice clouds and precipitation[J]. Science, 2009, 325(5936): 68-70 doi: 10.1126/science.1172344
    [5]
    MCCLEESE D J, HEAVENS N G, SCHOFIELD J T, et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars climate sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols[J]. Journal of Geophysical Research: Planets, 2010, 115(E12): E12016
    [6]
    SAVIJÄRVI H I, MCCONNOCHIE T H, HARRI A M, et al. Annual and diurnal water vapor cycles at curiosity from observations and column modeling[J]. Icarus, 2019, 319: 485-490 doi: 10.1016/j.icarus.2018.10.008
    [7]
    SAVIJÄRVI H I, MCCONNOCHIE T H, HARRI A M, et al. Water vapor mixing ratios and air temperatures for three Martian years from curiosity[J]. Icarus, 2019, 326: 170-175 doi: 10.1016/j.icarus.2019.03.020
    [8]
    PANKINE A A, TAMPPARI L K. MGS TES observations of the water vapor in the Martian southern polar atmosphere during spring and summer[J]. Icarus, 2019, 331: 26-48 doi: 10.1016/j.icarus.2019.05.010
    [9]
    FEDOROVA A, MONTMESSIN F, KORABLEV O, et al. Multi‐annual monitoring of the water vapor vertical distribution on Mars by SPICAM on Mars express[J]. Journal of Geophysical Research: Planets, 2021, 126(1): e2020JE006616 doi: 10.1029/2020JE006616
    [10]
    VANDAELE A C, KORABLEV O, DAERDEN F, et al. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars trace gas orbiter[J]. Nature, 2019, 568(7753): 521-525 doi: 10.1038/s41586-019-1097-3
    [11]
    CRISMANI M M J, VILLANUEVA G L, LIUZZI G, et al. A global and seasonal perspective of Martian water vapor from ExoMars/NOMAD[J]. Journal of Geophysical Research: Planets, 2021, 126(11): e2021JE006878 doi: 10.1029/2021JE006878
    [12]
    FOUCHET T, LELLOUCH E, IGNATIEV N I, et al. Martian water vapor: Mars express PFS/LW observations[J]. Icarus, 2007, 190(1): 32-49 doi: 10.1016/j.icarus.2007.03.003
    [13]
    STEELE L J, BALME M R, LEWIS S R, et al. The water cycle and regolith–atmosphere Interaction at Gale Crater, Mars[J]. Icarus, 2017, 289: 56-79 doi: 10.1016/j.icarus.2017.02.010
    [14]
    SAVIJÄRVI H I, HARRI A M. Water vapor adsorption on Mars[J]. Icarus, 2021, 357: 114270 doi: 10.1016/j.icarus.2020.114270
    [15]
    TROKHIMOVSKIY A, FEDOROVA A, KORABLEV O, et al. Mars’ water vapor mapping by the SPICAM IR spectrometer: five Martian years of observations[J]. Icarus, 2015, 251: 50-64 doi: 10.1016/j.icarus.2014.10.007
    [16]
    FEDOROVA A, KORABLEV O, BERTAUX J L, et al. Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions[J]. Journal of Geophysical Research: Planets, 2006, 111(E9): E09S08
    [17]
    AOKI S, VANDAELE A C, DAERDEN F, et al. Global vertical distribution of water vapor on Mars: results from 3.5 years of ExoMars-TGO/NOMAD science operations[J]. Journal of Geophysical Research: Planets, 2022, 12(9)7: e2022JE007231
    [18]
    AOKI S, VANDAELE A C, DAERDEN F, et al. Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD[J]. Journal of Geophysical Research: Planets, 2019, 124(12): 3482-3497 doi: 10.1029/2019JE006109
    [19]
    CONRATH B, CURRAN R, HANEL R, et al. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9[J]. Journal of Geophysical Research, 1973, 78(20): 4267-4278 doi: 10.1029/JB078i020p04267
    [20]
    HINSON D, WANG H Q, WILSON J, et al. Nighttime convection in water-ice clouds at high northern latitudes on Mars[J]. Icarus, 2022, 371: 114693 doi: 10.1016/j.icarus.2021.114693
    [21]
    PONCIN L, KLEINBÖHL A, KASS D M, et al. Water vapor saturation and ice cloud occurrence in the atmosphere of Mars[J]. Planetary and Space Science, 2022, 212: 105390 doi: 10.1016/j.pss.2021.105390
    [22]
    SAVIJÄRVI H I, HARRI A M, KEMPPINEN O. Mars science laboratory diurnal moisture observations and column simulations[J]. Journal of Geophysical Research: Planets, 2015, 120(5): 1011-1021 doi: 10.1002/2014JE004732
    [23]
    ZENT A P, HECHT M H, HUDSON T L, et al. A revised calibration function and results for the Phoenix mission TECP relative humidity sensor[J]. Journal of Geophysical Research: Planets, 2016, 121(4): 626-651 doi: 10.1002/2015JE004933
    [24]
    FARMER C B, DAVIES D W, LAPORTE D D. Mars: northern summer ice cap-water vapor observations from Viking 2[J]. Science, 1976, 194(4271): 1339-1341 doi: 10.1126/science.194.4271.1339
    [25]
    TITUS T N, KIEFFER H H, CHRISTENSEN P R. Exposed water ice discovered near the south pole of Mars[J]. Science, 2003, 299(5609): 1048-1051 doi: 10.1126/science.1080497
    [26]
    BOYNTON W V, FELDMAN W C, SQUYRES S W, et al. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits[J]. Science, 2002, 297(5578): 81-85 doi: 10.1126/science.1073722
    [27]
    FELDMAN W C, BOYNTON W V, TOKAR R L, et al. Global distribution of neutrons from Mars: results from Mars odyssey[J]. Science, 2002, 297(5578): 75-78 doi: 10.1126/science.1073541
    [28]
    TOKAR R L, FELDMAN W C, PRETTYMAN T H, et al. Ice concentration and distribution near the south pole of Mars: synthesis of odyssey and global surveyor analyses[J]. Geophysical Research Letters, 2002, 29(19): 10-1-10-4
    [29]
    MELLON M T, FELDMAN W C, PRETTYMAN T H. The presence and stability of ground ice in the southern hemisphere of Mars[J]. Icarus, 2004, 169(2): 324-340 doi: 10.1016/j.icarus.2003.10.022
    [30]
    BANDFIELD J L. High-resolution subsurface water-ice distributions on Mars[J]. Nature, 2007, 447(7140): 64-67 doi: 10.1038/nature05781
    [31]
    DUNDAS C M, BRAMSON A M, OJHA L, et al. Exposed subsurface ice sheets in the Martian mid-latitudes[J]. Science, 2018, 359(6372): 199-201 doi: 10.1126/science.aao1619
    [32]
    DUNDAS C M, BYRNE S, MCEWEN A S, et al. HiRISE observations of new impact craters exposing Martian ground ice[J]. Journal of Geophysical Research: Planets, 2014, 119(1): 109-127 doi: 10.1002/2013JE004482
    [33]
    MELLON M T, SIZEMORE H G. The history of ground ice at Jezero crater Mars and other past, present, and future landing sites[J]. Icarus, 2022, 371: 114667 doi: 10.1016/j.icarus.2021.114667
    [34]
    SMITH I B, PUTZIG N E, HOLT J W, et al. An ice age recorded in the polar deposits of Mars[J]. Science, 2016, 352(6289): 1075-1078 doi: 10.1126/science.aad6968
    [35]
    CHAMBERLAIN M A, BOYNTON W V. Response of Martian ground ice to orbit-induced climate change[J]. Journal of Geophysical Research: Planets, 2007, 112(E6): E06009
    [36]
    SCHORGHOFER N, AHARONSON O. Stability and exchange of subsurface ice on Mars[J]. Journal of Geophysical Research: Planets, 2005, 110(E5): E05003
    [37]
    PLAUT J J, PICARDI G, SAFAEINILI A, et al. Subsurface radar sounding of the south polar layered deposits of Mars[J]. Science, 2007, 316(5821): 92-95 doi: 10.1126/science.1139672
    [38]
    BISHOP J L, FAIRÉN A G, MICHALSKI J R, et al. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars[J]. Nature Astronomy, 2018, 2(3): 206-213 doi: 10.1038/s41550-017-0377-9
    [39]
    LIU Y, WU X, ZHAO Y S, et al. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars[J]. Science Advances, 2022, 8(19): eabn8555 doi: 10.1126/sciadv.abn8555
    [40]
    SQUYRES S W, GROTZINGER J P, ARVIDSON R E, et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars[J]. Science, 2004, 306(5702): 1709-1714 doi: 10.1126/science.1104559
    [41]
    GENDRIN A, MANGOLD N, BIBRING J P, et al. Sulfates in Martian layered terrains: the OMEGA/Mars express view[J]. Science, 2005, 307(5715): 1587-1591 doi: 10.1126/science.1109087
    [42]
    LANGEVIN Y, POULET F, BIBRING J P, et al. Sulfates in the North Polar region of Mars detected by OMEGA/Mars express[J]. Science, 2005, 307(5715): 1584-1586 doi: 10.1126/science.1109091
    [43]
    WISEMAN S M, ARVIDSON R E, ANDREWS-HANNA J C, et al. Phyllosilicate and sulfate-hematite deposits within miyamoto crater in Southern Sinus Meridiani, Mars[J]. Geophysical Research Letters, 2008, 35(19): L19204
    [44]
    HORGAN B H, BELL III J F, DOBREA E Z N, et al. Distribution of hydrated minerals in the North Polar Region of Mars[J]. Journal of Geophysical Research: Planets, 2009, 114(E1): E01005
    [45]
    WRAY J J, DOBREA E Z N, ARVIDSON R E, et al. Phyllosilicates and sulfates at endeavour Crater, Meridiani Planum, Mars[J]. Geophysical Research Letters, 2009, 36(21): L21201
    [46]
    杨懿, 金双根, 薛岩松. 利用CRISM数据探测火星表面含水矿物及其演化[J]. 深空探测学报, 2016, 3(2): 187-194

    YANG Yi, JIN Shuanggen, XUE Yansong. Identification and geological evolution of hydrated minerals at Holden and Jezero Impact Craters Mars using MRO CRISM hyperspectral data[J]. Journal of Deep Space Exploration, 2016, 3(2): 187-194
    [47]
    RAPIN W, MESLIN P Y, MAURICE S, et al. Hydration state of calcium sulfates in Gale Crater, Mars: identification of bassanite veins[J]. Earth and Planetary Science Letters, 2016, 452: 197-205 doi: 10.1016/j.jpgl.2016.07.045
    [48]
    DAS E, MUSTARD J F, TARNAS J D, et al. Investigating the origin of gypsum in Olympia Undae: characterizing the mineralogy of the basal unit[J]. Icarus, 2022, 372: 114720 doi: 10.1016/j.icarus.2021.114720
    [49]
    LOIZEAU D, MANGOLD N, POULET F, et al. Phyllosilicates in the Mawrth Vallis region of Mars[J]. Journal of Geophysical Research: Planets, 2007, 112(E8): E08S08
    [50]
    MUSTARD J F, MURCHIE S L, PELKEY S M, et al. Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument[J]. Nature, 2008, 454(7202): 305-309 doi: 10.1038/nature07097
    [51]
    EHLMANN B L, MUSTARD J F, SWAYZE G A, et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D08
    [52]
    PAN L, EHLMANN B L. Phyllosilicate and hydrated silica detections in the knobby terrains of Acidalia Planitia, Northern Plains, Mars[J]. Geophysical Research Letters, 2014, 41(6): 1890-1898 doi: 10.1002/2014GL059423
    [53]
    JAIN N, CHAUHAN P. Study of phyllosilicates and carbonates from the Capri Chasma Region of Valles Marineris on Mars based on Mars reconnaissance orbiter-compact reconnaissance imaging spectrometer for Mars (MRO-CRISM) observations[J]. Icarus, 2015, 250: 7-17 doi: 10.1016/j.icarus.2014.11.018
    [54]
    RIU L, CARTER J, POULET F. The M3 project: 3-global abundance distribution of hydrated silicates at Mars[J]. Icarus, 2022, 374: 114809 doi: 10.1016/j.icarus.2021.114809
    [55]
    MILLIKEN R E, SWAYZE G A, ARVIDSON R E, et al. Opaline silica in young deposits on Mars[J]. Geology, 2008, 36(11): 847-850 doi: 10.1130/G24967A.1
    [56]
    SEELOS K D, SEELOS F P, VIVIANO-BECK C E, et al. Mineralogy of the MSL curiosity landing site in gale crater as observed by MRO/CRISM[J]. Geophysical Research Letters, 2014, 41(14): 4880-4887 doi: 10.1002/2014GL060310
    [57]
    WEITZ C M, BISHOP J L, BAKER L L, et al. Fresh exposures of hydrous Fe-bearing amorphous silicates on Mars[J]. Geophysical Research Letters, 2014, 41(24): 8744-8751 doi: 10.1002/2014GL062065
    [58]
    PINEAU M, LE DEIT L, CHAUVIRÉ B, et al. Toward the geological significance of hydrated silica detected by near infrared spectroscopy on Mars based on terrestrial reference samples[J]. Icarus, 2020, 347: 113706 doi: 10.1016/j.icarus.2020.113706
    [59]
    CHAUVIRÉ B, PINEAU M, QUIRICO E, et al. Near infrared signature of opaline silica at Mars-relevant pressure and temperature[J]. Earth and Planetary Science Letters, 2021, 576: 117239 doi: 10.1016/j.jpgl.2021.117239
    [60]
    PAN L, CARTER J, QUANTIN-NATAF C, et al. Voluminous silica precipitated from Martian waters during late-stage aqueous alteration[J]. The Planetary Science Journal, 2021, 2(2): 65 doi: 10.3847/PSJ/abe541
    [61]
    SQUYRES S W, ARVIDSON R E, RUFF S, et al. Detection of silica-rich deposits on Mars[J]. Science, 2008, 320(5879): 1063-1067 doi: 10.1126/science.1155429
    [62]
    EHLMANN B L, EDWARDS C S. Mineralogy of the Martian surface[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 291-315 doi: 10.1146/annurev-earth-060313-055024
    [63]
    POULET F, BIBRING J P, MUSTARD J F, et al. Phyllosilicates on Mars and implications for early Martian climate[J]. Nature, 2005, 438(7068): 623-627 doi: 10.1038/nature04274
    [64]
    BIBRING J P, LANGEVIN Y, MUSTARD J F, et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data[J]. Science, 2006, 312(5772): 400-404 doi: 10.1126/science.1122659
    [65]
    EHLMANN B L, MUSTARD J F, MURCHIE S L, et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011, 479(7271): 53-60
    [66]
    NILES P B, MICHALSKI J, MING D W, et al. Elevated olivine weathering rates and sulfate formation at cryoge-nic temperatures on Mars[J]. Nature Communications, 2017, 8(1): 998 doi: 10.1038/s41467-017-01227-7
    [67]
    BISHOP J L, GROSS C, DANIELSEN J, et al. Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars[J]. Icarus, 2020, 341: 113634 doi: 10.1016/j.icarus.2020.113634
    [68]
    OROSEI R, LAURO S E, PETTINELLI E, et al. Radar evidence of subglacial liquid water on Mars[J]. Science, 2018, 361(6401): 490-493 doi: 10.1126/science.aar7268
    [69]
    BIERSON C J, TULACZYK S, COURVILLE S W, et al. Strong MARSIS radar reflections from the base of Martian south polar cap may be due to conductive ice or minerals[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093880 doi: 10.1029/2021GL093880
    [70]
    SMITH I B, LALICH D E, REZZA C, et al. A solid interpretation of bright radar reflectors under the Mars south polar ice[J]. Geophysical Research Letters, 2021, 48(15): e2021GL093618 doi: 10.1029/2021GL093618
    [71]
    MCEWEN A S, OJHA L, DUNDAS C M, et al. Seasonal flows on warm Martian slopes[J]. Science, 2011, 333(6043): 740-743 doi: 10.1126/science.1204816
    [72]
    OJHA L, MCEWEN A, DUNDAS C, et al. HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars[J]. Icarus, 2014, 231: 365-376 doi: 10.1016/j.icarus.2013.12.021
    [73]
    ABOTALIB A Z, HEGGY E. A deep groundwater origin for recurring slope lineae on Mars[J]. Nature Geoscience, 2019, 12(4): 235-241 doi: 10.1038/s41561-019-0327-5
    [74]
    QIN X G, REN X, WANG X, et al. Modern water at low latitudes on Mars: potential evidence from dune surfaces[J]. Science Advances, 2023, 9(17): eadd8868 doi: 10.1126/sciadv.add8868
    [75]
    KHAYAT A S J, SMITH M D, GUZEWICH S D. Understanding the water cycle above the north polar cap on Mars using MRO CRISM retrievals of water vapor[J]. Icarus, 2019, 321: 722-735 doi: 10.1016/j.icarus.2018.12.024
    [76]
    ZENT A P, FANALE F P, SALVAIL J R, et al. Distribution and state of H2O in the high-latitude shallow subsurface of Mars[J]. Icarus, 1986, 67(1): 19-36 doi: 10.1016/0019-1035(86)90171-5
    [77]
    JAKOSKY B M, MELLON M T. Water on Mars[J]. Physics Today, 2004, 57(4): 71-76 doi: 10.1063/1.1752425
    [78]
    JAKOSKY B M, MELLON M T, VARNES E S, et al. Mars low-latitude neutron distribution: possible remnant near-surface water ice and a mechanism for its recent emplacement[J]. Icarus, 2005, 175(1): 58-67 doi: 10.1016/j.icarus.2004.11.014
    [79]
    SMITH P H, TAMPPARI L K, ARVIDSON R E, et al. H2O at the phoenix landing site[J]. Science, 2009, 325(5936): 58-61 doi: 10.1126/science.1172339
    [80]
    KHAYAT A S J, SMITH M D, GUZEWICH S D. Detections of water vapor increase over the north polar troughs on Mars as observed by CRISM[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086195 doi: 10.1029/2019GL086195
    [81]
    ZHAO Y Y S, YU J, WEI G F, et al. In situ analysis of surface composition and meteorology at the Zhurong landing site on Mars[J]. National Science Review, 2023, 10(6): nwad056
    [82]
    上海交通大学. 上海交通大学智慧助力发现火星远古时代液态水存在新证据[EB/OL]. (2023-04-27)[2023-12-12]. https://heec.cahe.edu.cn/school/science-news/24788.html

    Shanghai Jiao Tong University. The latest results! The wisdom of Shanghai Jiao Tong University helps to discover new evidence for the existence of ancient liquid water on Mars[EB/OL]. (2023-04-27)[2023-12-12]. https://heec.cahe.edu.cn/school/science-news/24788.html.
    [83]
    SIZEMORE H G, MELLON M T. Laboratory characterization of the structural properties controlling dynamical gas transport in Mars-analog soils[J]. Icarus, 2008, 197(2): 606-620
    [84]
    BRYSON K L, CHEVRIER V, SEARS D W G, et al. Stability of ice on Mars and the water vapor diurnal cycle: Experimental study of the sublimation of ice through a fine-grained basaltic regolith[J]. Icarus, 2008, 196(2): 446-458 doi: 10.1016/j.icarus.2008.02.011
    [85]
    HUDSON T L, AHARONSON O, SCHORGHOFER N, et al. Water vapor diffusion in Mars subsurface environments[J]. Journal of Geophysical Research: Planets, 2007, 112(E5): E05016
    [86]
    HUDSON T L, AHARONSON O, SCHORGHOFER N. Laboratory experiments and models of diffusive emplacement of ground ice on Mars[J]. Journal of Geophysical Research: Planets, 2009, 114(E1): E01002
    [87]
    BECK P, POMMEROL A, SCHMITT B, et al. Kinetics of water adsorption on minerals and the breathing of the Martian regolith[J]. Journal of Geophysical Research: Planets, 2010, 115(E10): E10011
    [88]
    PRIMM K M, GOUGH R V, WONG J, et al. The effect of Mars-relevant soil analogs on the water uptake of magnesium perchlorate and implications for the near-surface of Mars[J]. Journal of Geophysical Research: Planets, 2018, 123(8): 2076-2088 doi: 10.1029/2018JE005540
    [89]
    NIKOLAKAKOS G, WHITEWAY J A. Laboratory study of adsorption and deliquescence on the surface of Mars[J]. Icarus, 2018, 308: 221-229 doi: 10.1016/j.icarus.2017.05.006
    [90]
    RAMACHANDRAN A V, ZORZANO M P, MARTÍN-TORRES J. Experimental investigation of the atmosphere-regolith water cycle on present-day Mars[J]. Sensors, 2021, 21(21): 7421 doi: 10.3390/s21217421
    [91]
    SLANK R A, RIVERA-VALENTÍNET E G, CHEVRIER V F. Experimental constraints on deliquescence of calcium perchlorate mixed with a Mars regolith analog[J]. The Planetary Science Journal, 2022, 3(7): 154 doi: 10.3847/PSJ/ac75c4
    [92]
    BÖTTGER H M, LEWIS S R, READ P L, et al. The effects of the Martian regolith on GCM water cycle simulations[J]. Icarus, 2005, 177(1): 174-189 doi: 10.1016/j.icarus.2005.02.024
    [93]
    STEELE L J, BALME M R, LEWIS S R. Regolith-atmosphere exchange of water in Mars’ recent past[J]. Icarus, 2017, 284: 233-248 doi: 10.1016/j.icarus.2016.11.023
    [94]
    PÁL B, KERESZTURI A, FORGET F, et al. Global seasonal variations of the near-surface relative humidity levels on present-day Mars[J]. Icarus, 2019, 333: 481-495 doi: 10.1016/j.icarus.2019.07.007
    [95]
    WERNICKE L J, JAKOSKY B M. Martian hydrated minerals: a significant water sink[J]. Journal of Geophysical Research: Planets, 2021, 126(3): e2019JE006351 doi: 10.1029/2019JE006351
    [96]
    KOUNAVES S P, HECHT M H, KAPIT J, et al. Soluble sulfate in the Martian soil at the phoenix landing site[J]. Geophysical Research Letters, 2010, 37(9): L09201
    [97]
    VANIMAN D T, BISH D L, MING D W, et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014, 343(6169): 1243480 doi: 10.1126/science.1243480
    [98]
    WEITZ C M, DOBREA E N, WRAY J J. Mixtures of clays and sulfates within deposits in western Melas Chasma, Mars[J]. Icarus, 2015, 251: 291-314 doi: 10.1016/j.icarus.2014.04.009
    [99]
    GRINDROD P M, WARNER N H, HOBLEY D E J, et al. Stepped fans and facies-equivalent phyllosilicates in Coprates Catena, Mars[J]. Icarus, 2018, 307: 260-280 doi: 10.1016/j.icarus.2017.10.030
    [100]
    BRISTOW T F, RAMPE E B, ACHILLES C N, et al. Clay mineral diversity and abundance in sedimentary rocks of gale crater, Mars[J]. Science Advances, 2018, 4(6): eaar3330 doi: 10.1126/sciadv.aar3330
    [101]
    GOUDGE T A, MUSTARD J F, HEAD J W, et al. Integrating CRISM and TES hyperspectral data to characterize a halloysite-bearing deposit in Kashira Crater, Mars[J]. Icarus, 2015, 250: 165-187 doi: 10.1016/j.icarus.2014.11.034
    [102]
    MESLIN P Y, GASNAULT O, FORNI O, et al. Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars[J]. Science, 2013, 341(6153): 1238670 doi: 10.1126/science.1238670
    [103]
    EHLMANN B L, BERGER G, MANGOLD N, et al. Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust[J]. Space Science Reviews, 2013, 174(1/2/3/4): 329-364
    [104]
    VANIMAN D T, MARTÍNEZ G M, RAMPE E B, et al. Gypsum, Bassanite, and anhydrite at gale crater, Mars[J]. American Mineralogist, 2018, 103(7): 1011-1020 doi: 10.2138/am-2018-6346
    [105]
    LIU Y. Raman, Mid-IR, and NIR spectroscopic study of calcium sulfates and mapping gypsum abundances in Columbus crater, Mars[J]. Planetary and Space Science, 2018, 163: 35-41 doi: 10.1016/j.pss.2018.04.010
    [106]
    LIU Y, GOUDGE T A, CATALANO J G, et al. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars[J]. Icarus, 2018, 302: 62-79 doi: 10.1016/j.icarus.2017.11.006
    [107]
    BAI H C, BI X Y, LIU C Q, et al. Spatial distributions and origin of hydrated sulfate minerals at the mineral bowl in Ophir Chasma, Mars[J]. Planetary and Space Science, 2021, 207: 105323 doi: 10.1016/j.pss.2021.105323
    [108]
    ROACH L H, MUSTARD J F, MURCHIE S L, et al. Testing evidence of recent hydration state change in sulfates on Mars[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D02
    [109]
    FLAHAUT J, QUANTIN C, ALLEMAND P, et al. Identification, distribution and possible origins of sulfates in Capri Chasma (Mars), inferred from CRISM data[J]. Journal of Geophysical Research: Planets, 2010, 115(E11): E11007
    [110]
    BISHOP J L, PARENTE M, WEITZ C M, et al. Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the Plateau[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D09
    [111]
    MURCHIE S, ROACH L, SEELOS F, et al. Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D05
    [112]
    FUETEN F, FLAHAUT J, STESKY R, et al. Stratigraphy and mineralogy of Candor Mensa, West Candor Chasma, Mars: insights into the geologic history of Valles Marineris[J]. Journal of Geophysical Research: Planets, 2014, 119(2): 331-354 doi: 10.1002/2013JE004557
    [113]
    SCHMIDT G, FUETEN F, STESKY R, et al. Geology of Hebes Chasma, Mars: 1. Structure, stratigraphy, and mineralogy of the interior layered deposits[J]. Journal of Geophysical Research: Planets, 2018, 123(11): 2893-2919 doi: 10.1029/2018JE005658
    [114]
    BIBRING J P, LANGEVIN Y, GENDRIN A, et al. Mars surface diversity as revealed by the OMEGA/Mars express observations[J]. Science, 2005, 307(5715): 1576-1581 doi: 10.1126/science.1108806
    [115]
    MURCHIE S L, MUSTARD J F, EHLMANN B L, et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars reconnaissance orbiter[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D06
    [116]
    SUN V Z, MILLIKEN R E. Distinct geologic settings of opal‐A and more crystalline hydrated silica on Mars[J]. Geophysical Research Letters, 2018, 45(19): 10221-10228
    [117]
    KARR C JR. Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals[M]. London: Academic Press, 1975
    [118]
    CARTER J, POULET F, BIBRING J P, et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view[J]. Journal of Geophysical Research: Planets, 2013, 118(4): 831-858 doi: 10.1029/2012JE004145
    [119]
    VIVIANO-BECK C E, SEELOS F P, MURCHIE S L, et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars[J]. Journal of Geophysical Research: Planets, 2014, 119(6): 1403-1431 doi: 10.1002/2014JE004627
    [120]
    JOUGLET D, POULET F, MILLIKEN R E, et al. Hydration state of the Martian surface as seen by Mars express OMEGA: 1. Analysis of the 3 μm hydration feature[J]. Journal of Geophysical Research: Planets, 2007, 112(E8): E08S06
    [121]
    GRINDROD P M, WEST M, WARNER N H, et al. Formation of an Hesperian-aged sedimentary basin containing phyllosilicates in Coprates Catena, Mars[J]. Icarus, 2012, 218(1): 178-195 doi: 10.1016/j.icarus.2011.11.027
    [122]
    BISHOP J L, PIETERS C M, EDWARDS J O. Infrared spectroscopic analyses on the nature of water in montmorillonite[J]. Clays and Clay Minerals, 1994, 42(6): 702-716 doi: 10.1346/CCMN.1994.0420606
    [123]
    CLOUTIS E A, CRAIG M A, KRUZELECKY R V, et al. Spectral reflectance properties of minerals exposed to simulated Mars surface conditions[J]. Icarus, 2008, 195(1): 140-168 doi: 10.1016/j.icarus.2007.10.028
    [124]
    李小红, 江向平, 陈超, 等. 几种不同产地高岭土的漫反射傅里叶红外光谱分析[J]. 光谱学与光谱分析, 2011, 31(1): 114-118

    LI Xiaohong, JIANG Xiangping, CHEN Chao, et al. Research on diffuse reflectance infrared Fourier transform spectroscopy of kinds of kaolin in Various Areas[J]. Spectroscopy and Spectral Analysis, 2011, 31(1): 114-118
    [125]
    CLOUTIS E A, HAWTHORNE F C, MERTZMAN S A, et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy[J]. Icarus, 2006, 184(1): 121-157 doi: 10.1016/j.icarus.2006.04.003
    [126]
    林红磊. 火星含水矿物精细类别的高光谱遥感探测方法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018

    LIN Honglei. Study on Hyperspectral Remote Sensing Detection Methods for Fine Classes of Hydrated Minerals on Mars[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2018
    [127]
    SUTTER B, DALTON J B, EWING S A, et al. Terrestrial analogs for interpretation of infrared spectra from the Martian surface and subsurface: sulfate, nitrate, carbonate, and phyllosilicate-bearing Atacama desert soils[J]. Journal of Geophysical Research: Biogeosciences, 2007, 112(G4): G04S10
    [128]
    BISHOP J L, LANE M D, DYAR M D, et al. What lurks in the Martian rocks and soil? Investigations of sulfates, phosphates, and perchlorates. Spectral properties of ca-sulfates: gypsum, bassanite, and anhydrite[J]. American Mineralogist, 2014, 99(10): 2105-2115 doi: 10.2138/am-2014-4756
    [129]
    CAO H J, CHEN J, LING Z C. Laboratory synthesis and spectroscopic studies of hydrated Al-sulfates relevant to Mars[J]. Icarus, 2019, 333: 283-293 doi: 10.1016/j.icarus.2019.05.039
    [130]
    LIU C Q, LING Z C, ZHANG J, et al. Laboratory Raman and VNIR spectroscopic studies of Jarosite and other secondary mineral mixtures relevant to Mars[J]. Journal of Raman Spectroscopy, 2020, 51(9): 1575-1588 doi: 10.1002/jrs.5809
    [131]
    EHLMANN B L, SWAYZE G A, MILLIKEN R E, et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters[J]. American Mineralogist, 2016, 101(7): 1527-1542 doi: 10.2138/am-2016-5574
    [132]
    KOKALY R F, CLARK R N, SWAYZE G A, et al. USGS Spectral Library Version 7[R]. U. S. Geological Survey Data Series 1035. U.S. Geological Survey, 2017: 61. https://doi.org/10.3133/ds1035
    [133]
    CLOUTIS E A, BELL J F. Diaspores and related hydroxides: spectral‐compositional properties and implications for Mars[J]. Journal of Geophysical Research: Planets, 2000, 105(E3): 7053-7070 doi: 10.1029/1999JE001188
    [134]
    RUAN H D, FROST R L, KLOPROGGE J T, et al. Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(5): 967-981 doi: 10.1016/S1386-1425(01)00574-1
    [135]
    周代华, 李学垣, 徐凤琳. Cu2+在针铁矿表面吸附的红外光谱研究[J]. 华中农业大学学报, 1996, 15(2): 153-156

    ZHOU Daihua, LI Xueyuan, XU Fenglin. Application of infrared technique to the study of Cu2+ adsorption on the surface in goethite[J]. Journal of Huazhong Agricultural University, 1996, 15(2): 153-156
    [136]
    SUN V Z. Clays and Opals on Mars: Implications for Water-Rock Interactions Through Time[D]. Providence: Brown University, 2017
    [137]
    POITRAS J T, CLOUTIS E A, SALVATORE M R, et al. Mars analog Minerals’ spectral reflectance characteristics under Martian surface conditions[J]. Icarus, 2018, 306: 50-73 doi: 10.1016/j.icarus.2018.01.023
    [138]
    RICE M S, CLOUTIS E A, BELL III J F, et al. Reflectance spectra diversity of silica-rich materials: sensitivity to environment and implications for detections on Mars[J]. Icarus, 2013, 223(1): 499-533 doi: 10.1016/j.icarus.2012.09.021
    [139]
    CHAUVIRÉ B, RONDEAU B, MANGOLD N. Near infrared signature of opal and chalcedony as a proxy for their structure and formation conditions[J]. European Journal of Mineralogy, 2017, 29(3): 409-421 doi: 10.1127/ejm/2017/0029-2614
    [140]
    MCCORD T B, ORLANDO T M, TEETER G, et al. Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions[J]. Journal of Geophysical Research: Planets, 2001, 106(E2): 3311-3319 doi: 10.1029/2000JE001282
    [141]
    DALTON III J B, PITMAN K M, JAMIESON C S, et al. Spectral properties of hydrated sulfate minerals on Mars [C]//EPSC-DPS Joint Meeting. Nantes: European Planetary Science Congress, 2011
    [142]
    DE ANGELIS S, CARLI C, TOSI F, et al. Temperature-dependent VNIR Spectroscopy of Hydrated Mg-sulfates[J]. Icarus, 2017, 281: 444-458 doi: 10.1016/j.icarus.2016.07.022
    [143]
    DE ANGELIS S, TOSI F, CARLI C, et al. Temperature-dependent, VIS-NIR reflectance spectroscopy of sodium sulfates[J]. Icarus, 2021, 357: 114165 doi: 10.1016/j.icarus.2020.114165
    [144]
    WU X, MUSTARD J F, TARNAS J D, et al. Imaging Mars analog Minerals’ reflectance spectra and testing mineral detection algorithms[J]. Icarus, 2021, 369: 114644 doi: 10.1016/j.icarus.2021.114644
    [145]
    WU X, LIU Y, ZHANG C L, et al. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars[J]. Icarus, 2021, 370: 114657 doi: 10.1016/j.icarus.2021.114657
    [146]
    TANAKA K L, ROBBINS S J, FORTEZZO C M, et al. The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history[J]. Planetary and Space Science, 2014, 95: 11-24 doi: 10.1016/j.pss.2013.03.006
    [147]
    LI C, ZHENG Y K, WANG X, et al. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J]. Nature, 2022, 610(7931): 308-312 doi: 10.1038/s41586-022-05147-5
    [148]
    XIAO L, HUANG J, KUSKY T, et al. Evidence for marine sedimentary rocks in Utopia Planitia: Zhurong rover observations[J]. National Science Review, 2023, 10(9): nwad137 doi: 10.1093/nsr/nwad137
    [149]
    LIU C Q, LING Z C, WU Z C, et al. Aqueous alteration of the Vastitas borealis formation at the Tianwen-1 landing site[J]. Communications Earth & Environment, 2022, 3(1): 280
    [150]
    WANG J, ZHAO J N, XIAO L, et al. Recent aqueous activity on Mars evidenced by transverse Aeolian ridges in the Zhurong exploration region of Utopia Planitia[J]. Geophysical Research Letters, 2023, 50(6): e2022GL101650 doi: 10.1029/2022GL101650
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article Views(688) PDF Downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return