Citation: | YIN Haoan, TANG Hong, LI Xiongyao, YU Wen. Occurrence and Infrared Absorption Spectra of Martian Water (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1086-1105 doi: 10.11728/cjss2024.06.2023-0118 |
[1] |
SPINRAD H, MUNCH G, KAPLAN L D. The detection of water vapor on Mars[J]. Astrophysical Journal, 1963, 137: 1319-1321 doi: 10.1086/147613
|
[2] |
FARMER C B, DAVIES D W, HOLLAND A L, et al. Mars: water vapor observations from the Viking orbiters[J]. Journal of Geophysical Research, 1977, 82(28): 4225-4248 doi: 10.1029/JS082i028p04225
|
[3] |
JAKOSKY B M, FARMER C B. The seasonal and global behavior of water vapor in the Mars atmosphere: complete global results of the Viking atmospheric water detector experiment[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B4): 2999-3019 doi: 10.1029/JB087iB04p02999
|
[4] |
WHITEWAY J A, KOMGUEM L, DICKINSON C, et al. Mars water-ice clouds and precipitation[J]. Science, 2009, 325(5936): 68-70 doi: 10.1126/science.1172344
|
[5] |
MCCLEESE D J, HEAVENS N G, SCHOFIELD J T, et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars climate sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols[J]. Journal of Geophysical Research: Planets, 2010, 115(E12): E12016
|
[6] |
SAVIJÄRVI H I, MCCONNOCHIE T H, HARRI A M, et al. Annual and diurnal water vapor cycles at curiosity from observations and column modeling[J]. Icarus, 2019, 319: 485-490 doi: 10.1016/j.icarus.2018.10.008
|
[7] |
SAVIJÄRVI H I, MCCONNOCHIE T H, HARRI A M, et al. Water vapor mixing ratios and air temperatures for three Martian years from curiosity[J]. Icarus, 2019, 326: 170-175 doi: 10.1016/j.icarus.2019.03.020
|
[8] |
PANKINE A A, TAMPPARI L K. MGS TES observations of the water vapor in the Martian southern polar atmosphere during spring and summer[J]. Icarus, 2019, 331: 26-48 doi: 10.1016/j.icarus.2019.05.010
|
[9] |
FEDOROVA A, MONTMESSIN F, KORABLEV O, et al. Multi‐annual monitoring of the water vapor vertical distribution on Mars by SPICAM on Mars express[J]. Journal of Geophysical Research: Planets, 2021, 126(1): e2020JE006616 doi: 10.1029/2020JE006616
|
[10] |
VANDAELE A C, KORABLEV O, DAERDEN F, et al. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars trace gas orbiter[J]. Nature, 2019, 568(7753): 521-525 doi: 10.1038/s41586-019-1097-3
|
[11] |
CRISMANI M M J, VILLANUEVA G L, LIUZZI G, et al. A global and seasonal perspective of Martian water vapor from ExoMars/NOMAD[J]. Journal of Geophysical Research: Planets, 2021, 126(11): e2021JE006878 doi: 10.1029/2021JE006878
|
[12] |
FOUCHET T, LELLOUCH E, IGNATIEV N I, et al. Martian water vapor: Mars express PFS/LW observations[J]. Icarus, 2007, 190(1): 32-49 doi: 10.1016/j.icarus.2007.03.003
|
[13] |
STEELE L J, BALME M R, LEWIS S R, et al. The water cycle and regolith–atmosphere Interaction at Gale Crater, Mars[J]. Icarus, 2017, 289: 56-79 doi: 10.1016/j.icarus.2017.02.010
|
[14] |
SAVIJÄRVI H I, HARRI A M. Water vapor adsorption on Mars[J]. Icarus, 2021, 357: 114270 doi: 10.1016/j.icarus.2020.114270
|
[15] |
TROKHIMOVSKIY A, FEDOROVA A, KORABLEV O, et al. Mars’ water vapor mapping by the SPICAM IR spectrometer: five Martian years of observations[J]. Icarus, 2015, 251: 50-64 doi: 10.1016/j.icarus.2014.10.007
|
[16] |
FEDOROVA A, KORABLEV O, BERTAUX J L, et al. Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions[J]. Journal of Geophysical Research: Planets, 2006, 111(E9): E09S08
|
[17] |
AOKI S, VANDAELE A C, DAERDEN F, et al. Global vertical distribution of water vapor on Mars: results from 3.5 years of ExoMars-TGO/NOMAD science operations[J]. Journal of Geophysical Research: Planets, 2022, 12(9)7: e2022JE007231
|
[18] |
AOKI S, VANDAELE A C, DAERDEN F, et al. Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD[J]. Journal of Geophysical Research: Planets, 2019, 124(12): 3482-3497 doi: 10.1029/2019JE006109
|
[19] |
CONRATH B, CURRAN R, HANEL R, et al. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9[J]. Journal of Geophysical Research, 1973, 78(20): 4267-4278 doi: 10.1029/JB078i020p04267
|
[20] |
HINSON D, WANG H Q, WILSON J, et al. Nighttime convection in water-ice clouds at high northern latitudes on Mars[J]. Icarus, 2022, 371: 114693 doi: 10.1016/j.icarus.2021.114693
|
[21] |
PONCIN L, KLEINBÖHL A, KASS D M, et al. Water vapor saturation and ice cloud occurrence in the atmosphere of Mars[J]. Planetary and Space Science, 2022, 212: 105390 doi: 10.1016/j.pss.2021.105390
|
[22] |
SAVIJÄRVI H I, HARRI A M, KEMPPINEN O. Mars science laboratory diurnal moisture observations and column simulations[J]. Journal of Geophysical Research: Planets, 2015, 120(5): 1011-1021 doi: 10.1002/2014JE004732
|
[23] |
ZENT A P, HECHT M H, HUDSON T L, et al. A revised calibration function and results for the Phoenix mission TECP relative humidity sensor[J]. Journal of Geophysical Research: Planets, 2016, 121(4): 626-651 doi: 10.1002/2015JE004933
|
[24] |
FARMER C B, DAVIES D W, LAPORTE D D. Mars: northern summer ice cap-water vapor observations from Viking 2[J]. Science, 1976, 194(4271): 1339-1341 doi: 10.1126/science.194.4271.1339
|
[25] |
TITUS T N, KIEFFER H H, CHRISTENSEN P R. Exposed water ice discovered near the south pole of Mars[J]. Science, 2003, 299(5609): 1048-1051 doi: 10.1126/science.1080497
|
[26] |
BOYNTON W V, FELDMAN W C, SQUYRES S W, et al. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits[J]. Science, 2002, 297(5578): 81-85 doi: 10.1126/science.1073722
|
[27] |
FELDMAN W C, BOYNTON W V, TOKAR R L, et al. Global distribution of neutrons from Mars: results from Mars odyssey[J]. Science, 2002, 297(5578): 75-78 doi: 10.1126/science.1073541
|
[28] |
TOKAR R L, FELDMAN W C, PRETTYMAN T H, et al. Ice concentration and distribution near the south pole of Mars: synthesis of odyssey and global surveyor analyses[J]. Geophysical Research Letters, 2002, 29(19): 10-1-10-4
|
[29] |
MELLON M T, FELDMAN W C, PRETTYMAN T H. The presence and stability of ground ice in the southern hemisphere of Mars[J]. Icarus, 2004, 169(2): 324-340 doi: 10.1016/j.icarus.2003.10.022
|
[30] |
BANDFIELD J L. High-resolution subsurface water-ice distributions on Mars[J]. Nature, 2007, 447(7140): 64-67 doi: 10.1038/nature05781
|
[31] |
DUNDAS C M, BRAMSON A M, OJHA L, et al. Exposed subsurface ice sheets in the Martian mid-latitudes[J]. Science, 2018, 359(6372): 199-201 doi: 10.1126/science.aao1619
|
[32] |
DUNDAS C M, BYRNE S, MCEWEN A S, et al. HiRISE observations of new impact craters exposing Martian ground ice[J]. Journal of Geophysical Research: Planets, 2014, 119(1): 109-127 doi: 10.1002/2013JE004482
|
[33] |
MELLON M T, SIZEMORE H G. The history of ground ice at Jezero crater Mars and other past, present, and future landing sites[J]. Icarus, 2022, 371: 114667 doi: 10.1016/j.icarus.2021.114667
|
[34] |
SMITH I B, PUTZIG N E, HOLT J W, et al. An ice age recorded in the polar deposits of Mars[J]. Science, 2016, 352(6289): 1075-1078 doi: 10.1126/science.aad6968
|
[35] |
CHAMBERLAIN M A, BOYNTON W V. Response of Martian ground ice to orbit-induced climate change[J]. Journal of Geophysical Research: Planets, 2007, 112(E6): E06009
|
[36] |
SCHORGHOFER N, AHARONSON O. Stability and exchange of subsurface ice on Mars[J]. Journal of Geophysical Research: Planets, 2005, 110(E5): E05003
|
[37] |
PLAUT J J, PICARDI G, SAFAEINILI A, et al. Subsurface radar sounding of the south polar layered deposits of Mars[J]. Science, 2007, 316(5821): 92-95 doi: 10.1126/science.1139672
|
[38] |
BISHOP J L, FAIRÉN A G, MICHALSKI J R, et al. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars[J]. Nature Astronomy, 2018, 2(3): 206-213 doi: 10.1038/s41550-017-0377-9
|
[39] |
LIU Y, WU X, ZHAO Y S, et al. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars[J]. Science Advances, 2022, 8(19): eabn8555 doi: 10.1126/sciadv.abn8555
|
[40] |
SQUYRES S W, GROTZINGER J P, ARVIDSON R E, et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars[J]. Science, 2004, 306(5702): 1709-1714 doi: 10.1126/science.1104559
|
[41] |
GENDRIN A, MANGOLD N, BIBRING J P, et al. Sulfates in Martian layered terrains: the OMEGA/Mars express view[J]. Science, 2005, 307(5715): 1587-1591 doi: 10.1126/science.1109087
|
[42] |
LANGEVIN Y, POULET F, BIBRING J P, et al. Sulfates in the North Polar region of Mars detected by OMEGA/Mars express[J]. Science, 2005, 307(5715): 1584-1586 doi: 10.1126/science.1109091
|
[43] |
WISEMAN S M, ARVIDSON R E, ANDREWS-HANNA J C, et al. Phyllosilicate and sulfate-hematite deposits within miyamoto crater in Southern Sinus Meridiani, Mars[J]. Geophysical Research Letters, 2008, 35(19): L19204
|
[44] |
HORGAN B H, BELL III J F, DOBREA E Z N, et al. Distribution of hydrated minerals in the North Polar Region of Mars[J]. Journal of Geophysical Research: Planets, 2009, 114(E1): E01005
|
[45] |
WRAY J J, DOBREA E Z N, ARVIDSON R E, et al. Phyllosilicates and sulfates at endeavour Crater, Meridiani Planum, Mars[J]. Geophysical Research Letters, 2009, 36(21): L21201
|
[46] |
杨懿, 金双根, 薛岩松. 利用CRISM数据探测火星表面含水矿物及其演化[J]. 深空探测学报, 2016, 3(2): 187-194
YANG Yi, JIN Shuanggen, XUE Yansong. Identification and geological evolution of hydrated minerals at Holden and Jezero Impact Craters Mars using MRO CRISM hyperspectral data[J]. Journal of Deep Space Exploration, 2016, 3(2): 187-194
|
[47] |
RAPIN W, MESLIN P Y, MAURICE S, et al. Hydration state of calcium sulfates in Gale Crater, Mars: identification of bassanite veins[J]. Earth and Planetary Science Letters, 2016, 452: 197-205 doi: 10.1016/j.jpgl.2016.07.045
|
[48] |
DAS E, MUSTARD J F, TARNAS J D, et al. Investigating the origin of gypsum in Olympia Undae: characterizing the mineralogy of the basal unit[J]. Icarus, 2022, 372: 114720 doi: 10.1016/j.icarus.2021.114720
|
[49] |
LOIZEAU D, MANGOLD N, POULET F, et al. Phyllosilicates in the Mawrth Vallis region of Mars[J]. Journal of Geophysical Research: Planets, 2007, 112(E8): E08S08
|
[50] |
MUSTARD J F, MURCHIE S L, PELKEY S M, et al. Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument[J]. Nature, 2008, 454(7202): 305-309 doi: 10.1038/nature07097
|
[51] |
EHLMANN B L, MUSTARD J F, SWAYZE G A, et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D08
|
[52] |
PAN L, EHLMANN B L. Phyllosilicate and hydrated silica detections in the knobby terrains of Acidalia Planitia, Northern Plains, Mars[J]. Geophysical Research Letters, 2014, 41(6): 1890-1898 doi: 10.1002/2014GL059423
|
[53] |
JAIN N, CHAUHAN P. Study of phyllosilicates and carbonates from the Capri Chasma Region of Valles Marineris on Mars based on Mars reconnaissance orbiter-compact reconnaissance imaging spectrometer for Mars (MRO-CRISM) observations[J]. Icarus, 2015, 250: 7-17 doi: 10.1016/j.icarus.2014.11.018
|
[54] |
RIU L, CARTER J, POULET F. The M3 project: 3-global abundance distribution of hydrated silicates at Mars[J]. Icarus, 2022, 374: 114809 doi: 10.1016/j.icarus.2021.114809
|
[55] |
MILLIKEN R E, SWAYZE G A, ARVIDSON R E, et al. Opaline silica in young deposits on Mars[J]. Geology, 2008, 36(11): 847-850 doi: 10.1130/G24967A.1
|
[56] |
SEELOS K D, SEELOS F P, VIVIANO-BECK C E, et al. Mineralogy of the MSL curiosity landing site in gale crater as observed by MRO/CRISM[J]. Geophysical Research Letters, 2014, 41(14): 4880-4887 doi: 10.1002/2014GL060310
|
[57] |
WEITZ C M, BISHOP J L, BAKER L L, et al. Fresh exposures of hydrous Fe-bearing amorphous silicates on Mars[J]. Geophysical Research Letters, 2014, 41(24): 8744-8751 doi: 10.1002/2014GL062065
|
[58] |
PINEAU M, LE DEIT L, CHAUVIRÉ B, et al. Toward the geological significance of hydrated silica detected by near infrared spectroscopy on Mars based on terrestrial reference samples[J]. Icarus, 2020, 347: 113706 doi: 10.1016/j.icarus.2020.113706
|
[59] |
CHAUVIRÉ B, PINEAU M, QUIRICO E, et al. Near infrared signature of opaline silica at Mars-relevant pressure and temperature[J]. Earth and Planetary Science Letters, 2021, 576: 117239 doi: 10.1016/j.jpgl.2021.117239
|
[60] |
PAN L, CARTER J, QUANTIN-NATAF C, et al. Voluminous silica precipitated from Martian waters during late-stage aqueous alteration[J]. The Planetary Science Journal, 2021, 2(2): 65 doi: 10.3847/PSJ/abe541
|
[61] |
SQUYRES S W, ARVIDSON R E, RUFF S, et al. Detection of silica-rich deposits on Mars[J]. Science, 2008, 320(5879): 1063-1067 doi: 10.1126/science.1155429
|
[62] |
EHLMANN B L, EDWARDS C S. Mineralogy of the Martian surface[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 291-315 doi: 10.1146/annurev-earth-060313-055024
|
[63] |
POULET F, BIBRING J P, MUSTARD J F, et al. Phyllosilicates on Mars and implications for early Martian climate[J]. Nature, 2005, 438(7068): 623-627 doi: 10.1038/nature04274
|
[64] |
BIBRING J P, LANGEVIN Y, MUSTARD J F, et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data[J]. Science, 2006, 312(5772): 400-404 doi: 10.1126/science.1122659
|
[65] |
EHLMANN B L, MUSTARD J F, MURCHIE S L, et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011, 479(7271): 53-60
|
[66] |
NILES P B, MICHALSKI J, MING D W, et al. Elevated olivine weathering rates and sulfate formation at cryoge-nic temperatures on Mars[J]. Nature Communications, 2017, 8(1): 998 doi: 10.1038/s41467-017-01227-7
|
[67] |
BISHOP J L, GROSS C, DANIELSEN J, et al. Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars[J]. Icarus, 2020, 341: 113634 doi: 10.1016/j.icarus.2020.113634
|
[68] |
OROSEI R, LAURO S E, PETTINELLI E, et al. Radar evidence of subglacial liquid water on Mars[J]. Science, 2018, 361(6401): 490-493 doi: 10.1126/science.aar7268
|
[69] |
BIERSON C J, TULACZYK S, COURVILLE S W, et al. Strong MARSIS radar reflections from the base of Martian south polar cap may be due to conductive ice or minerals[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093880 doi: 10.1029/2021GL093880
|
[70] |
SMITH I B, LALICH D E, REZZA C, et al. A solid interpretation of bright radar reflectors under the Mars south polar ice[J]. Geophysical Research Letters, 2021, 48(15): e2021GL093618 doi: 10.1029/2021GL093618
|
[71] |
MCEWEN A S, OJHA L, DUNDAS C M, et al. Seasonal flows on warm Martian slopes[J]. Science, 2011, 333(6043): 740-743 doi: 10.1126/science.1204816
|
[72] |
OJHA L, MCEWEN A, DUNDAS C, et al. HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars[J]. Icarus, 2014, 231: 365-376 doi: 10.1016/j.icarus.2013.12.021
|
[73] |
ABOTALIB A Z, HEGGY E. A deep groundwater origin for recurring slope lineae on Mars[J]. Nature Geoscience, 2019, 12(4): 235-241 doi: 10.1038/s41561-019-0327-5
|
[74] |
QIN X G, REN X, WANG X, et al. Modern water at low latitudes on Mars: potential evidence from dune surfaces[J]. Science Advances, 2023, 9(17): eadd8868 doi: 10.1126/sciadv.add8868
|
[75] |
KHAYAT A S J, SMITH M D, GUZEWICH S D. Understanding the water cycle above the north polar cap on Mars using MRO CRISM retrievals of water vapor[J]. Icarus, 2019, 321: 722-735 doi: 10.1016/j.icarus.2018.12.024
|
[76] |
ZENT A P, FANALE F P, SALVAIL J R, et al. Distribution and state of H2O in the high-latitude shallow subsurface of Mars[J]. Icarus, 1986, 67(1): 19-36 doi: 10.1016/0019-1035(86)90171-5
|
[77] |
JAKOSKY B M, MELLON M T. Water on Mars[J]. Physics Today, 2004, 57(4): 71-76 doi: 10.1063/1.1752425
|
[78] |
JAKOSKY B M, MELLON M T, VARNES E S, et al. Mars low-latitude neutron distribution: possible remnant near-surface water ice and a mechanism for its recent emplacement[J]. Icarus, 2005, 175(1): 58-67 doi: 10.1016/j.icarus.2004.11.014
|
[79] |
SMITH P H, TAMPPARI L K, ARVIDSON R E, et al. H2O at the phoenix landing site[J]. Science, 2009, 325(5936): 58-61 doi: 10.1126/science.1172339
|
[80] |
KHAYAT A S J, SMITH M D, GUZEWICH S D. Detections of water vapor increase over the north polar troughs on Mars as observed by CRISM[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086195 doi: 10.1029/2019GL086195
|
[81] |
ZHAO Y Y S, YU J, WEI G F, et al. In situ analysis of surface composition and meteorology at the Zhurong landing site on Mars[J]. National Science Review, 2023, 10(6): nwad056
|
[82] |
上海交通大学. 上海交通大学智慧助力发现火星远古时代液态水存在新证据[EB/OL]. (2023-04-27)[2023-12-12]. https://heec.cahe.edu.cn/school/science-news/24788.html
Shanghai Jiao Tong University. The latest results! The wisdom of Shanghai Jiao Tong University helps to discover new evidence for the existence of ancient liquid water on Mars[EB/OL]. (2023-04-27)[2023-12-12]. https://heec.cahe.edu.cn/school/science-news/24788.html.
|
[83] |
SIZEMORE H G, MELLON M T. Laboratory characterization of the structural properties controlling dynamical gas transport in Mars-analog soils[J]. Icarus, 2008, 197(2): 606-620
|
[84] |
BRYSON K L, CHEVRIER V, SEARS D W G, et al. Stability of ice on Mars and the water vapor diurnal cycle: Experimental study of the sublimation of ice through a fine-grained basaltic regolith[J]. Icarus, 2008, 196(2): 446-458 doi: 10.1016/j.icarus.2008.02.011
|
[85] |
HUDSON T L, AHARONSON O, SCHORGHOFER N, et al. Water vapor diffusion in Mars subsurface environments[J]. Journal of Geophysical Research: Planets, 2007, 112(E5): E05016
|
[86] |
HUDSON T L, AHARONSON O, SCHORGHOFER N. Laboratory experiments and models of diffusive emplacement of ground ice on Mars[J]. Journal of Geophysical Research: Planets, 2009, 114(E1): E01002
|
[87] |
BECK P, POMMEROL A, SCHMITT B, et al. Kinetics of water adsorption on minerals and the breathing of the Martian regolith[J]. Journal of Geophysical Research: Planets, 2010, 115(E10): E10011
|
[88] |
PRIMM K M, GOUGH R V, WONG J, et al. The effect of Mars-relevant soil analogs on the water uptake of magnesium perchlorate and implications for the near-surface of Mars[J]. Journal of Geophysical Research: Planets, 2018, 123(8): 2076-2088 doi: 10.1029/2018JE005540
|
[89] |
NIKOLAKAKOS G, WHITEWAY J A. Laboratory study of adsorption and deliquescence on the surface of Mars[J]. Icarus, 2018, 308: 221-229 doi: 10.1016/j.icarus.2017.05.006
|
[90] |
RAMACHANDRAN A V, ZORZANO M P, MARTÍN-TORRES J. Experimental investigation of the atmosphere-regolith water cycle on present-day Mars[J]. Sensors, 2021, 21(21): 7421 doi: 10.3390/s21217421
|
[91] |
SLANK R A, RIVERA-VALENTÍNET E G, CHEVRIER V F. Experimental constraints on deliquescence of calcium perchlorate mixed with a Mars regolith analog[J]. The Planetary Science Journal, 2022, 3(7): 154 doi: 10.3847/PSJ/ac75c4
|
[92] |
BÖTTGER H M, LEWIS S R, READ P L, et al. The effects of the Martian regolith on GCM water cycle simulations[J]. Icarus, 2005, 177(1): 174-189 doi: 10.1016/j.icarus.2005.02.024
|
[93] |
STEELE L J, BALME M R, LEWIS S R. Regolith-atmosphere exchange of water in Mars’ recent past[J]. Icarus, 2017, 284: 233-248 doi: 10.1016/j.icarus.2016.11.023
|
[94] |
PÁL B, KERESZTURI A, FORGET F, et al. Global seasonal variations of the near-surface relative humidity levels on present-day Mars[J]. Icarus, 2019, 333: 481-495 doi: 10.1016/j.icarus.2019.07.007
|
[95] |
WERNICKE L J, JAKOSKY B M. Martian hydrated minerals: a significant water sink[J]. Journal of Geophysical Research: Planets, 2021, 126(3): e2019JE006351 doi: 10.1029/2019JE006351
|
[96] |
KOUNAVES S P, HECHT M H, KAPIT J, et al. Soluble sulfate in the Martian soil at the phoenix landing site[J]. Geophysical Research Letters, 2010, 37(9): L09201
|
[97] |
VANIMAN D T, BISH D L, MING D W, et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014, 343(6169): 1243480 doi: 10.1126/science.1243480
|
[98] |
WEITZ C M, DOBREA E N, WRAY J J. Mixtures of clays and sulfates within deposits in western Melas Chasma, Mars[J]. Icarus, 2015, 251: 291-314 doi: 10.1016/j.icarus.2014.04.009
|
[99] |
GRINDROD P M, WARNER N H, HOBLEY D E J, et al. Stepped fans and facies-equivalent phyllosilicates in Coprates Catena, Mars[J]. Icarus, 2018, 307: 260-280 doi: 10.1016/j.icarus.2017.10.030
|
[100] |
BRISTOW T F, RAMPE E B, ACHILLES C N, et al. Clay mineral diversity and abundance in sedimentary rocks of gale crater, Mars[J]. Science Advances, 2018, 4(6): eaar3330 doi: 10.1126/sciadv.aar3330
|
[101] |
GOUDGE T A, MUSTARD J F, HEAD J W, et al. Integrating CRISM and TES hyperspectral data to characterize a halloysite-bearing deposit in Kashira Crater, Mars[J]. Icarus, 2015, 250: 165-187 doi: 10.1016/j.icarus.2014.11.034
|
[102] |
MESLIN P Y, GASNAULT O, FORNI O, et al. Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars[J]. Science, 2013, 341(6153): 1238670 doi: 10.1126/science.1238670
|
[103] |
EHLMANN B L, BERGER G, MANGOLD N, et al. Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust[J]. Space Science Reviews, 2013, 174(1/2/3/4): 329-364
|
[104] |
VANIMAN D T, MARTÍNEZ G M, RAMPE E B, et al. Gypsum, Bassanite, and anhydrite at gale crater, Mars[J]. American Mineralogist, 2018, 103(7): 1011-1020 doi: 10.2138/am-2018-6346
|
[105] |
LIU Y. Raman, Mid-IR, and NIR spectroscopic study of calcium sulfates and mapping gypsum abundances in Columbus crater, Mars[J]. Planetary and Space Science, 2018, 163: 35-41 doi: 10.1016/j.pss.2018.04.010
|
[106] |
LIU Y, GOUDGE T A, CATALANO J G, et al. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars[J]. Icarus, 2018, 302: 62-79 doi: 10.1016/j.icarus.2017.11.006
|
[107] |
BAI H C, BI X Y, LIU C Q, et al. Spatial distributions and origin of hydrated sulfate minerals at the mineral bowl in Ophir Chasma, Mars[J]. Planetary and Space Science, 2021, 207: 105323 doi: 10.1016/j.pss.2021.105323
|
[108] |
ROACH L H, MUSTARD J F, MURCHIE S L, et al. Testing evidence of recent hydration state change in sulfates on Mars[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D02
|
[109] |
FLAHAUT J, QUANTIN C, ALLEMAND P, et al. Identification, distribution and possible origins of sulfates in Capri Chasma (Mars), inferred from CRISM data[J]. Journal of Geophysical Research: Planets, 2010, 115(E11): E11007
|
[110] |
BISHOP J L, PARENTE M, WEITZ C M, et al. Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the Plateau[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D09
|
[111] |
MURCHIE S, ROACH L, SEELOS F, et al. Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D05
|
[112] |
FUETEN F, FLAHAUT J, STESKY R, et al. Stratigraphy and mineralogy of Candor Mensa, West Candor Chasma, Mars: insights into the geologic history of Valles Marineris[J]. Journal of Geophysical Research: Planets, 2014, 119(2): 331-354 doi: 10.1002/2013JE004557
|
[113] |
SCHMIDT G, FUETEN F, STESKY R, et al. Geology of Hebes Chasma, Mars: 1. Structure, stratigraphy, and mineralogy of the interior layered deposits[J]. Journal of Geophysical Research: Planets, 2018, 123(11): 2893-2919 doi: 10.1029/2018JE005658
|
[114] |
BIBRING J P, LANGEVIN Y, GENDRIN A, et al. Mars surface diversity as revealed by the OMEGA/Mars express observations[J]. Science, 2005, 307(5715): 1576-1581 doi: 10.1126/science.1108806
|
[115] |
MURCHIE S L, MUSTARD J F, EHLMANN B L, et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars reconnaissance orbiter[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D06
|
[116] |
SUN V Z, MILLIKEN R E. Distinct geologic settings of opal‐A and more crystalline hydrated silica on Mars[J]. Geophysical Research Letters, 2018, 45(19): 10221-10228
|
[117] |
KARR C JR. Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals[M]. London: Academic Press, 1975
|
[118] |
CARTER J, POULET F, BIBRING J P, et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view[J]. Journal of Geophysical Research: Planets, 2013, 118(4): 831-858 doi: 10.1029/2012JE004145
|
[119] |
VIVIANO-BECK C E, SEELOS F P, MURCHIE S L, et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars[J]. Journal of Geophysical Research: Planets, 2014, 119(6): 1403-1431 doi: 10.1002/2014JE004627
|
[120] |
JOUGLET D, POULET F, MILLIKEN R E, et al. Hydration state of the Martian surface as seen by Mars express OMEGA: 1. Analysis of the 3 μm hydration feature[J]. Journal of Geophysical Research: Planets, 2007, 112(E8): E08S06
|
[121] |
GRINDROD P M, WEST M, WARNER N H, et al. Formation of an Hesperian-aged sedimentary basin containing phyllosilicates in Coprates Catena, Mars[J]. Icarus, 2012, 218(1): 178-195 doi: 10.1016/j.icarus.2011.11.027
|
[122] |
BISHOP J L, PIETERS C M, EDWARDS J O. Infrared spectroscopic analyses on the nature of water in montmorillonite[J]. Clays and Clay Minerals, 1994, 42(6): 702-716 doi: 10.1346/CCMN.1994.0420606
|
[123] |
CLOUTIS E A, CRAIG M A, KRUZELECKY R V, et al. Spectral reflectance properties of minerals exposed to simulated Mars surface conditions[J]. Icarus, 2008, 195(1): 140-168 doi: 10.1016/j.icarus.2007.10.028
|
[124] |
李小红, 江向平, 陈超, 等. 几种不同产地高岭土的漫反射傅里叶红外光谱分析[J]. 光谱学与光谱分析, 2011, 31(1): 114-118
LI Xiaohong, JIANG Xiangping, CHEN Chao, et al. Research on diffuse reflectance infrared Fourier transform spectroscopy of kinds of kaolin in Various Areas[J]. Spectroscopy and Spectral Analysis, 2011, 31(1): 114-118
|
[125] |
CLOUTIS E A, HAWTHORNE F C, MERTZMAN S A, et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy[J]. Icarus, 2006, 184(1): 121-157 doi: 10.1016/j.icarus.2006.04.003
|
[126] |
林红磊. 火星含水矿物精细类别的高光谱遥感探测方法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018
LIN Honglei. Study on Hyperspectral Remote Sensing Detection Methods for Fine Classes of Hydrated Minerals on Mars[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2018
|
[127] |
SUTTER B, DALTON J B, EWING S A, et al. Terrestrial analogs for interpretation of infrared spectra from the Martian surface and subsurface: sulfate, nitrate, carbonate, and phyllosilicate-bearing Atacama desert soils[J]. Journal of Geophysical Research: Biogeosciences, 2007, 112(G4): G04S10
|
[128] |
BISHOP J L, LANE M D, DYAR M D, et al. What lurks in the Martian rocks and soil? Investigations of sulfates, phosphates, and perchlorates. Spectral properties of ca-sulfates: gypsum, bassanite, and anhydrite[J]. American Mineralogist, 2014, 99(10): 2105-2115 doi: 10.2138/am-2014-4756
|
[129] |
CAO H J, CHEN J, LING Z C. Laboratory synthesis and spectroscopic studies of hydrated Al-sulfates relevant to Mars[J]. Icarus, 2019, 333: 283-293 doi: 10.1016/j.icarus.2019.05.039
|
[130] |
LIU C Q, LING Z C, ZHANG J, et al. Laboratory Raman and VNIR spectroscopic studies of Jarosite and other secondary mineral mixtures relevant to Mars[J]. Journal of Raman Spectroscopy, 2020, 51(9): 1575-1588 doi: 10.1002/jrs.5809
|
[131] |
EHLMANN B L, SWAYZE G A, MILLIKEN R E, et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters[J]. American Mineralogist, 2016, 101(7): 1527-1542 doi: 10.2138/am-2016-5574
|
[132] |
KOKALY R F, CLARK R N, SWAYZE G A, et al. USGS Spectral Library Version 7[R]. U. S. Geological Survey Data Series 1035. U.S. Geological Survey, 2017: 61. https://doi.org/10.3133/ds1035
|
[133] |
CLOUTIS E A, BELL J F. Diaspores and related hydroxides: spectral‐compositional properties and implications for Mars[J]. Journal of Geophysical Research: Planets, 2000, 105(E3): 7053-7070 doi: 10.1029/1999JE001188
|
[134] |
RUAN H D, FROST R L, KLOPROGGE J T, et al. Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(5): 967-981 doi: 10.1016/S1386-1425(01)00574-1
|
[135] |
周代华, 李学垣, 徐凤琳. Cu2+在针铁矿表面吸附的红外光谱研究[J]. 华中农业大学学报, 1996, 15(2): 153-156
ZHOU Daihua, LI Xueyuan, XU Fenglin. Application of infrared technique to the study of Cu2+ adsorption on the surface in goethite[J]. Journal of Huazhong Agricultural University, 1996, 15(2): 153-156
|
[136] |
SUN V Z. Clays and Opals on Mars: Implications for Water-Rock Interactions Through Time[D]. Providence: Brown University, 2017
|
[137] |
POITRAS J T, CLOUTIS E A, SALVATORE M R, et al. Mars analog Minerals’ spectral reflectance characteristics under Martian surface conditions[J]. Icarus, 2018, 306: 50-73 doi: 10.1016/j.icarus.2018.01.023
|
[138] |
RICE M S, CLOUTIS E A, BELL III J F, et al. Reflectance spectra diversity of silica-rich materials: sensitivity to environment and implications for detections on Mars[J]. Icarus, 2013, 223(1): 499-533 doi: 10.1016/j.icarus.2012.09.021
|
[139] |
CHAUVIRÉ B, RONDEAU B, MANGOLD N. Near infrared signature of opal and chalcedony as a proxy for their structure and formation conditions[J]. European Journal of Mineralogy, 2017, 29(3): 409-421 doi: 10.1127/ejm/2017/0029-2614
|
[140] |
MCCORD T B, ORLANDO T M, TEETER G, et al. Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions[J]. Journal of Geophysical Research: Planets, 2001, 106(E2): 3311-3319 doi: 10.1029/2000JE001282
|
[141] |
DALTON III J B, PITMAN K M, JAMIESON C S, et al. Spectral properties of hydrated sulfate minerals on Mars [C]//EPSC-DPS Joint Meeting. Nantes: European Planetary Science Congress, 2011
|
[142] |
DE ANGELIS S, CARLI C, TOSI F, et al. Temperature-dependent VNIR Spectroscopy of Hydrated Mg-sulfates[J]. Icarus, 2017, 281: 444-458 doi: 10.1016/j.icarus.2016.07.022
|
[143] |
DE ANGELIS S, TOSI F, CARLI C, et al. Temperature-dependent, VIS-NIR reflectance spectroscopy of sodium sulfates[J]. Icarus, 2021, 357: 114165 doi: 10.1016/j.icarus.2020.114165
|
[144] |
WU X, MUSTARD J F, TARNAS J D, et al. Imaging Mars analog Minerals’ reflectance spectra and testing mineral detection algorithms[J]. Icarus, 2021, 369: 114644 doi: 10.1016/j.icarus.2021.114644
|
[145] |
WU X, LIU Y, ZHANG C L, et al. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars[J]. Icarus, 2021, 370: 114657 doi: 10.1016/j.icarus.2021.114657
|
[146] |
TANAKA K L, ROBBINS S J, FORTEZZO C M, et al. The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history[J]. Planetary and Space Science, 2014, 95: 11-24 doi: 10.1016/j.pss.2013.03.006
|
[147] |
LI C, ZHENG Y K, WANG X, et al. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J]. Nature, 2022, 610(7931): 308-312 doi: 10.1038/s41586-022-05147-5
|
[148] |
XIAO L, HUANG J, KUSKY T, et al. Evidence for marine sedimentary rocks in Utopia Planitia: Zhurong rover observations[J]. National Science Review, 2023, 10(9): nwad137 doi: 10.1093/nsr/nwad137
|
[149] |
LIU C Q, LING Z C, WU Z C, et al. Aqueous alteration of the Vastitas borealis formation at the Tianwen-1 landing site[J]. Communications Earth & Environment, 2022, 3(1): 280
|
[150] |
WANG J, ZHAO J N, XIAO L, et al. Recent aqueous activity on Mars evidenced by transverse Aeolian ridges in the Zhurong exploration region of Utopia Planitia[J]. Geophysical Research Letters, 2023, 50(6): e2022GL101650 doi: 10.1029/2022GL101650
|