Citation: | ZHOU Taichun, GUO Guohang, XIAO Zhigang, LI Hu. Anomaly Detection of Satellite Telemetry Data Based on Latent Space Interpolation Autoencoder (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1155-1165 doi: 10.11728/cjss2024.06.2023-0147 |
[1] |
刘恩雨. 卫星姿态控制系统故障诊断方法及健康管理研究[D]. 沈阳: 沈阳理工大学, 2023
LIU Enyu. Research on Fault diagnosis Method and Health Management of satellite Attitude Control System[D]. Shenyang: Shenyang Ligong University, 2023
|
[2] |
李虎, 郭国航, 胡钛, 等. 遥测参数数据载荷状态判别集成学习方法[J]. 国防科技大学学报, 2021, 43(6): 33-40 doi: 10.11887/j.cn.202106005
LI HU, GUO Guohang, HU Tai, et al. Ensemble learning for state recognition of payload from telemetry data[J]. Journal of National University of Defense Technology, 2021, 43(6): 33-40 doi: 10.11887/j.cn.202106005
|
[3] |
JIANG H X, ZHANG K, WANG J Y, et al. Anomaly detection and identification in satellite telemetry data based on pseudo-period[J]. Applied Sciences, 2020, 10(1): 103
|
[4] |
YAIRI T, TAKEISHI N, ODA T, et al. A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1384-1401 doi: 10.1109/TAES.2017.2671247
|
[5] |
刘超. 基于深度学习的航天器异常检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022
LIU Chao. Spacecraft Anomaly Detection Method based on the Deep Learning Research[D]. Harbin: Harbin Industrial University, 2022
|
[6] |
王婵, 王慧泉, 金仲和. 皮纳卫星遥测数据异常检测聚类分析方法[J]. 哈尔滨工业大学学报, 2018, 50(4): 110-116
WANG Chan, WANG Huiquan, JIN Zhonghe. Pico-satellite telemetry anomaly detection through clustering[J]. Journal of Harbin Institute of Technology, 2018, 50(4): 110-116
|
[7] |
ZHANG L W, YU J S, TANG D Y, et al. Anomaly detection for spacecraft using hierarchical agglomerative clustering based on maximal information coefficient[C]//2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). Kristiansand, Norway: IEEE, 2020: 1848-1853
|
[8] |
SHI X T, PANG J Y, LIU D T, et al. Satellite telemetry time series clustering with improved key points series segmentation[C]//2017 Prognostics and System Health Management Conference (PHM-Harbin). Harbin, China: IEEE, 2017: 1-7
|
[9] |
PAN D W, LIU D T, ZHOU J, et al. Anomaly detection for satellite power subsystem with associated rules based on kernel principal component analysis[J]. Microelectronics Reliability, 2015, 55(9/10): 2082-2086
|
[10] |
李海玲, 董广然, 党琦. 一种航天器异常检测案例关联方法[J]. 电讯技术, 2018, 58(7): 843-847
LI Hailing, DONG Guangran, DANG Qi. A spacecraft anomaly detection case correlation method[J]. Telecommunication Engineering, 2018, 58(7): 843-847
|
[11] |
LI C L, SOHN K, YOON J, et al. CutPaste: Self-supervised learning for anomaly detection and localization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 9659-9669
|
[12] |
LIU Y F, ZHUANG C Q, LU F. Unsupervised two-stage anomaly detection[OL]. arXiv preprint arXiv: 2103.11671, 2021
|
[13] |
DENG T Q, YE D S, MA R, et al. Low-rank local tangent space embedding for subspace clustering[J]. Information Sciences, 2020, 508: 1-21 doi: 10.1016/j.ins.2019.08.060
|
[14] |
ERFANI S M, RAJASEGARAR S, KARUNASEKERA S, et al. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]. Pattern Recognition, 2016, 58: 121-134 doi: 10.1016/j.patcog.2016.03.028
|
[15] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536 doi: 10.1038/323533a0
|
[16] |
BERTHELOT D, RAFFEL C, ROY A, et al. Understanding and improving interpolation in autoencoders via an adversarial regularizer[OL]. arXiv preprint arXiv 1807.07543, 2018
|
[17] |
SCHÖLKOPF B, WILLIAMSON R, SMOLA A, et al. Support vector method for novelty detection[C]//Proceedings of the 12th International Conference on Neural Information Processing Systems. Denver, CO: MIT Press, 1999: 582-588
|
[18] |
LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008: 413-422
|
[19] |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[J]. ACM SIGMOD Record, 2000, 29(2): 93-104 doi: 10.1145/335191.335388
|
[20] |
RUFF L, VANDERMEULEN R, GÖRNITZ N, et al. Deep one-class classification[C]//Proceedings of the 35th International Conference on Machine Learning (PMLR). Stockholm, Sweden, 2018: 4393-4402
|
[21] |
ZONG B, SONG Q, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]//6th International Conference on Learning Representations (ICLR). Vancouver, BC, Canada, 2018 : 1-19
|
[22] |
BERGMAN L, HOSHEN Y. Classification-based anomaly detection for general data[OL]. arXiv preprint arXiv: 2005.02359, 2020
|