Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
ZHOU Taichun, GUO Guohang, XIAO Zhigang, LI Hu. Anomaly Detection of Satellite Telemetry Data Based on Latent Space Interpolation Autoencoder (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1155-1165 doi: 10.11728/cjss2024.06.2023-0147
Citation: ZHOU Taichun, GUO Guohang, XIAO Zhigang, LI Hu. Anomaly Detection of Satellite Telemetry Data Based on Latent Space Interpolation Autoencoder (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1155-1165 doi: 10.11728/cjss2024.06.2023-0147

Anomaly Detection of Satellite Telemetry Data Based on Latent Space Interpolation Autoencoder

doi: 10.11728/cjss2024.06.2023-0147 cstr: 32142.14.cjss.2023-0147
  • Received Date: 2023-12-13
  • Rev Recd Date: 2024-01-19
  • Available Online: 2024-11-02
  • Satellite telemetry parameters are the critical indicators for the ground operation and management system to assess the normal state of satellite operation in orbit, and anomaly detection of telemetry parameters is essential to guarantee the safe and reliable operation of satellites and the smooth execution of tasks. In response to the existing satellite telemetry anomaly detection algorithms for parameter feature extraction there is a lack of differentiation, effective anomaly decision-making information is not sufficiently extracted and other problems, this paper proposes an anomaly detection method based on the optimization of latent space interpolation, the latent space optimization constraints after the self-coder’s representation learning ability and the density estimation ability of the Kernel Density Estimation (KDE) method are combined to effectively carry out the anomaly detection. Real telemetry parameter data from quantum science satellites and public datasets are used for validation, and the results show that the proposed method improves the Auc and F1 values over the optimal comparison method by 5.6% and 5.8%, respectively, on real telemetry parameters. Compared with other anomaly detection algorithms, the proposed method has strong ability to discriminate normal and abnormal samples, effectively solves the problems of lack of differentiation of features and insufficient extraction of decision information, and has good noise immunity and effectiveness.

     

  • loading
  • [1]
    刘恩雨. 卫星姿态控制系统故障诊断方法及健康管理研究[D]. 沈阳: 沈阳理工大学, 2023

    LIU Enyu. Research on Fault diagnosis Method and Health Management of satellite Attitude Control System[D]. Shenyang: Shenyang Ligong University, 2023
    [2]
    李虎, 郭国航, 胡钛, 等. 遥测参数数据载荷状态判别集成学习方法[J]. 国防科技大学学报, 2021, 43(6): 33-40 doi: 10.11887/j.cn.202106005

    LI HU, GUO Guohang, HU Tai, et al. Ensemble learning for state recognition of payload from telemetry data[J]. Journal of National University of Defense Technology, 2021, 43(6): 33-40 doi: 10.11887/j.cn.202106005
    [3]
    JIANG H X, ZHANG K, WANG J Y, et al. Anomaly detection and identification in satellite telemetry data based on pseudo-period[J]. Applied Sciences, 2020, 10(1): 103
    [4]
    YAIRI T, TAKEISHI N, ODA T, et al. A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1384-1401 doi: 10.1109/TAES.2017.2671247
    [5]
    刘超. 基于深度学习的航天器异常检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022

    LIU Chao. Spacecraft Anomaly Detection Method based on the Deep Learning Research[D]. Harbin: Harbin Industrial University, 2022
    [6]
    王婵, 王慧泉, 金仲和. 皮纳卫星遥测数据异常检测聚类分析方法[J]. 哈尔滨工业大学学报, 2018, 50(4): 110-116

    WANG Chan, WANG Huiquan, JIN Zhonghe. Pico-satellite telemetry anomaly detection through clustering[J]. Journal of Harbin Institute of Technology, 2018, 50(4): 110-116
    [7]
    ZHANG L W, YU J S, TANG D Y, et al. Anomaly detection for spacecraft using hierarchical agglomerative clustering based on maximal information coefficient[C]//2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). Kristiansand, Norway: IEEE, 2020: 1848-1853
    [8]
    SHI X T, PANG J Y, LIU D T, et al. Satellite telemetry time series clustering with improved key points series segmentation[C]//2017 Prognostics and System Health Management Conference (PHM-Harbin). Harbin, China: IEEE, 2017: 1-7
    [9]
    PAN D W, LIU D T, ZHOU J, et al. Anomaly detection for satellite power subsystem with associated rules based on kernel principal component analysis[J]. Microelectronics Reliability, 2015, 55(9/10): 2082-2086
    [10]
    李海玲, 董广然, 党琦. 一种航天器异常检测案例关联方法[J]. 电讯技术, 2018, 58(7): 843-847

    LI Hailing, DONG Guangran, DANG Qi. A spacecraft anomaly detection case correlation method[J]. Telecommunication Engineering, 2018, 58(7): 843-847
    [11]
    LI C L, SOHN K, YOON J, et al. CutPaste: Self-supervised learning for anomaly detection and localization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 9659-9669
    [12]
    LIU Y F, ZHUANG C Q, LU F. Unsupervised two-stage anomaly detection[OL]. arXiv preprint arXiv: 2103.11671, 2021
    [13]
    DENG T Q, YE D S, MA R, et al. Low-rank local tangent space embedding for subspace clustering[J]. Information Sciences, 2020, 508: 1-21 doi: 10.1016/j.ins.2019.08.060
    [14]
    ERFANI S M, RAJASEGARAR S, KARUNASEKERA S, et al. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]. Pattern Recognition, 2016, 58: 121-134 doi: 10.1016/j.patcog.2016.03.028
    [15]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536 doi: 10.1038/323533a0
    [16]
    BERTHELOT D, RAFFEL C, ROY A, et al. Understanding and improving interpolation in autoencoders via an adversarial regularizer[OL]. arXiv preprint arXiv 1807.07543, 2018
    [17]
    SCHÖLKOPF B, WILLIAMSON R, SMOLA A, et al. Support vector method for novelty detection[C]//Proceedings of the 12th International Conference on Neural Information Processing Systems. Denver, CO: MIT Press, 1999: 582-588
    [18]
    LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008: 413-422
    [19]
    BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[J]. ACM SIGMOD Record, 2000, 29(2): 93-104 doi: 10.1145/335191.335388
    [20]
    RUFF L, VANDERMEULEN R, GÖRNITZ N, et al. Deep one-class classification[C]//Proceedings of the 35th International Conference on Machine Learning (PMLR). Stockholm, Sweden, 2018: 4393-4402
    [21]
    ZONG B, SONG Q, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]//6th International Conference on Learning Representations (ICLR). Vancouver, BC, Canada, 2018 : 1-19
    [22]
    BERGMAN L, HOSHEN Y. Classification-based anomaly detection for general data[OL]. arXiv preprint arXiv: 2005.02359, 2020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article Views(292) PDF Downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return