Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
YU Jing, PENG Xiaodong, XIE Wenming, QIN Runnan, WANG Youliang. Spatial Non-cooperative Target Behavior Intent Recognition Based on Data Generation and Deep Neural Networks (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1134-1146 doi: 10.11728/cjss2024.06.2023-0151
Citation: YU Jing, PENG Xiaodong, XIE Wenming, QIN Runnan, WANG Youliang. Spatial Non-cooperative Target Behavior Intent Recognition Based on Data Generation and Deep Neural Networks (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1134-1146 doi: 10.11728/cjss2024.06.2023-0151

Spatial Non-cooperative Target Behavior Intent Recognition Based on Data Generation and Deep Neural Networks

doi: 10.11728/cjss2024.06.2023-0151 cstr: 32142.14.cjss.2023-0151
  • Received Date: 2023-12-26
  • Rev Recd Date: 2024-02-26
  • Available Online: 2024-05-24
  • Under the conditions of informatization, the space environment has become increasingly complex, and the number of non cooperative targets in space is growing. Ground operators find it difficult to quickly and accurately identify the intentions of non cooperative targets based on their motion patterns. Therefore, a spatial non cooperative target behavior intention recognition model based on Stacked Autoencoder (SAE) and Gated Recurrent network Unit (GRU) was proposed to assist ground operators in identifying the intention of non cooperative targets. This model utilizes an autoencoder to compress time series data, extract key features, and uses a GRU network to classify trajectories. At present, there is no publicly available orbit data for non cooperative target behavior, and it is difficult to fully train the model with only a small amount of known data. To solve the problem of poor recognition performance caused by insufficient samples, a simulation sample generation method is proposed, which obtains a large amount of target behavior trajectory data through simulation for the recognition of spatial non cooperative target behavior intentions. After the simulation data is obtained, the simulation data set is used as the input. The experimental results show that compared with the single model only using the Long and Short Term Memory network (LSTM), GRU-FCN, SAE, and Back-Propagation (BP), this method has significantly improved the accuracy and loss value performance indicators, reaching 97.8% accuracy.

     

  • loading
  • [1]
    JI Xiang. Study of Situation Assessment Techniques Based on Clustering and Matching[D]. Changsha: National University of Defense Technology, 2016
    [2]
    赵福均, 周志杰, 胡昌华, 等. 基于置信规则库和证据推理的空中目标意图识别方法[J]. 电光与控制, 2017, 24(8): 15-19,50 doi: 10.3969/j.issn.1671-637X.2017.08.004

    ZHAO Fujun, ZHOU Zhijie, HU Changhua, et al. Aerial target intention recognition approach based on belief-rule-base and evidential reasoning[J]. Electronics Optics & Control, 2017, 24(8): 15-19,50 doi: 10.3969/j.issn.1671-637X.2017.08.004
    [3]
    WANG Haiwang, SHI Hongquan, LI Xiaodan. An intention recognition method based on intuitionistic fuzzy sets and Bayesian inference[J]. Ship Electronic Engineering, 2019, 39(6): 42-45 doi: 10.3969/j.issn.1672-9730.2019.06.011
    [4]
    FAN Hanyang, GAO Ruiyuan, JIN Xinghua. Research on intention estimation method based on fuzzy random Bayesian networks[J]. Fire Control & Command Control, 2019, 44(7): 100-104,109 doi: 10.3969/j.issn.1002-0640.2019.07.019
    [5]
    伍之前, 李登峰. 基于推理和多属性决策的空中目标攻击意图判断模型[J]. 电光与控制, 2010, 17(5): 10-13 doi: 10.3969/j.issn.1671-637X.2010.05.003

    WU Zhiqian, LI Dengfeng. A model for aerial target attacking intention judgment based on reasoning and multi-attribute decision making[J]. Electronics Optics & Control, 2010, 17(5): 10-13 doi: 10.3969/j.issn.1671-637X.2010.05.003
    [6]
    HE Yu, CHANG Leilei, JIANG Jiang, et al. Intension identification in air defense based on belief rule base expert system under expert guidance[J]. Fire Control & Command Control, 2017, 42(9): 7-12 doi: 10.3969/j.issn.1002-0640.2017.09.002
    [7]
    贾苏元, 徐金钰, 王钰. 基于自适应神经网络模糊系统(ANFIS)的空中目标意图分类[J]. 电子测量技术, 2016, 39(12): 62-66 doi: 10.3969/j.issn.1002-7300.2016.12.013

    JIA Suyuan, XU Jinyu, WANG Yu. Classification of air target intention based on adaptive neural network fuzzy system (ANFIS)[J]. Electronic Measurement Technology, 2016, 39(12): 62-66 doi: 10.3969/j.issn.1002-7300.2016.12.013
    [8]
    TENG F, SONG Y F, GUO X P. Attention-TCN-BiGRU: an air target combat intention recognition model[J]. Mathematics, 2021, 9(19): 2412. doi: 10.3390/math9192412
    [9]
    李颖, 武君胜, 李伟刚, 等. 一种识别作战意图的层次聚合模型[J]. 西北工业大学学报, 2023, 41(2): 400-408 doi: 10.3969/j.issn.1000-2758.2023.02.018

    LI Ying, WU Junsheng, LI Weigang, et al. A hierarchical aggregation model for combat intention recognition[J]. Journal of Northwestern Polytechnical University, 2023, 41(2): 400-408 doi: 10.3969/j.issn.1000-2758.2023.02.018
    [10]
    QU C X, GUO Z C, XIA S J, et al. Intention recognition of aerial target based on deep learning[J]. Evolutionary Intelligence, 2024, 17(1): 303-311 doi: 10.1007/s12065-022-00728-9
    [11]
    WANG Yang. Research on battlefield target identification and situation intention forecasting[D]. Wuxi: Jiangnan University, 2015
    [12]
    XIAO Q L, LIU Y N, DENG X Y, et al. A robust target intention recognition method based on dynamic Bayesian network[C]//Proceedings of the 33rd Chinese Control and Decision Conference. Kunming: IEEE, 2021: 6846-6851. DOI: 10.1109/CCDC52312.2021.9602205
    [13]
    ZHANG C H, ZHOU Y, LI H, et al. Combat intention recognition of air targets based on 1DCNN-BiLSTM[J]. IEEE Access, 2023, 11: 134504-134516 doi: 10.1109/ACCESS.2023.3337640
    [14]
    ZHANG Y, MA W C, HUANG F H, et al. A novel air target intention recognition method based on sample reweighting and attention-Bi-GRU[J]. IEEE Systems Journal, 2024, 18(1): 501-504 doi: 10.1109/JSYST.2023.3319643
    [15]
    LAI J, WANG X D, XIANG Q, et al. A semi-supervised stacked autoencoder using the pseudo label for classification tasks[J]. Entropy, 2023, 25(9): 1274 doi: 10.3390/e25091274
    [16]
    朱正龙, 闫野, 杨跃能. 高精度空间非合作式相对轨道状态预报[J]. 国防科技大学学报, 2016, 38(3): 81-87 doi: 10.11887/j.cn.201603014

    ZHU Zhenglong, YAN Ye, YANG Yueneng. High-accuracy state propagation of non-cooperative relative orbit in space[J]. Journal of National University of Defense Technology, 2016, 38(3): 81-87 doi: 10.11887/j.cn.201603014
    [17]
    徐利民, 张涛, 陶佳伟. 能量最优与燃料最优Lambert交会问题[J]. 北京航空航天大学学报, 2018, 44(9): 1888-1893

    XU Limin, ZHANG Tao, TAO Jiawei. Energy-optimal and fuel-optimal problems for lambert rendezvous[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1888-1893
    [18]
    CUI Wenhao. Research on the Satellite Formation Reconfiguration and Keeping under J2 Perturbation[D]. Harbin: Harbin Engineering University, 2019
    [19]
    VALLADO A D. Fundamentals of Astrodynamics and Applications[M]. 4th ed. Hawthorne: Microcosm Press, 2013: 628-636
    [20]
    WANG Youliang. Relative Trajectory Optimization and Control for Satellite Formation Flying[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2018
    [21]
    LI Wenxin. Research on Modeling and Accuracy Evaluation Technology of Spacecraft Unpowered Rendezvous[D]. Beijing: Beijing Jiaotong University, 2022. DOI: 10.26944/d.cnki.gbfju.2022.002957
    [22]
    SABOL C, MCLAUGHLIN C A, LUU K K. Meet the cluster orbits with perturbations of Keplerian elements (COWPOKE) equations[J]. Advances in the Astronautical Sciences, 2003, 114: 573-594
    [23]
    韩潮, 殷建丰. 基于相对轨道要素的椭圆轨道卫星相对运动研究[J]. 航空学报, 2011, 32(12): 2244-2258

    HAN Chao, YIN Jianfeng. Study of satellite relative motion in elliptical orbit using relative orbit elements[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2244-2258
    [24]
    丁鹏, 宋亚飞. 代价敏感的空中目标意图识别方法[J]. 航空学报, 2023, 44(24): 328551 doi: 10.7527/S1000-6893.2023.2855

    DING Peng, SONG Yafei. A cost-sensitive method for aerial target intention recognition[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328551 doi: 10.7527/S1000-6893.2023.2855
    [25]
    ZHANG Shanbin. Emotional classification of short-term ECG signals using BP neural network[J]. Journal of Fujian Computer, 2024, 40(2): 11-16 doi: 10.16707/j.cnki.fjpc.2024.02.003
    [26]
    方华珍, 刘立, 顾青, 等. 基于轨迹预测和极限梯度提升的驾驶意图识别[J]. 吉林大学学报(工学版), 2024: 1-9

    FANG Huazhen, LIU Li, GU Qing, et al. Driving intention recognition based on trajectory prediction and extreme gradient boosting[J]. Journal of Jilin University(Engineering and Technology Edition), 2024: 1-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article Views(842) PDF Downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return