Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
JIAO Qirong, ZHANG Dianjun, LIU Wenlong. Kp Index Forecast Model Based on GBR Method (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1012-1020 doi: 10.11728/cjss2024.06.2024-0011
Citation: JIAO Qirong, ZHANG Dianjun, LIU Wenlong. Kp Index Forecast Model Based on GBR Method (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1012-1020 doi: 10.11728/cjss2024.06.2024-0011

Kp Index Forecast Model Based on GBR Method

doi: 10.11728/cjss2024.06.2024-0011 cstr: 32142.14.cjss.2024-0011
  • Received Date: 2024-01-18
  • Rev Recd Date: 2024-05-23
  • Available Online: 2024-07-15
  • The solar wind transports solar activity energy to interplanetary space, causing changes in the spatial structure of the Earth’s magnetosphere and causing disastrous space weather. The Kp index is an important indicator for space weather alerts and a key parameter for the coupling between solar wind and the magnetosphere. With the development of machine learning methods, more and more space weather forecasting works adopt this method. In this paper, two machine learning methods, Gradient Boosting Regression (GBR) algorithm and Random Forest (RF), are used to construct a 3-hour Kp index prediction model with solar wind, interplanetary magnetic field parameters, historical Kp values and sunspot data as inputs. The forecast results show that our methods can predict the Kp index one hour in advance and the correlation coefficient is 0.90 between the Kp index of the optimal case recommended by the model and the actual value. The GBR model performs better, the root Mean Square Error (Erms) is 0.56, and the Prediction Efficiency (P) is 0.81. The Kp index prediction model shows varying performances in different solar cycle phases, with better result during the cycle descending phase. The high-speed solar wind drive dominates the magnetospheric dynamics, and the model with solar wind as the main input parameter in the cycle descending phase has a better prediction effect. The model prediction situations under different geomagnetic disturbances have been compared. Compared with moderate and super severe magnetic storms, the model has the highest prediction accuracy for severe magnetic storms (6≤Kp<7). In this study, the results of different prediction models are compared and analyzed. The prediction model can not only provide early warning of severe space weather, but also better understand the relationship between geomagnetic index and solar wind input energy, which provides more methods and theoretical basis for the research work of solar wind-magnetosphere coupling.

     

  • loading
  • [1]
    CAO J B, DUAN J T, DU A M, et al. Characteristics of middle- to low-latitude Pi2 excited by bursty bulk flows[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A7): A07S15
    [2]
    CAO J B, YAN C X, DUNLOP M, et al. Geomagnetic signatures of current wedge produced by fast flows in a plasma sheet[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A8): A08205
    [3]
    . BARTELS J. The standardized index, Ks, and the planetary index Kp[J]. IATME Bull 12b, IUGG Publ Office, Paris 1949 : 97–112; reprinted in: IAGA Bull 12i, IUGG Publ Office, Paris 1955: 88–101
    [4]
    TAKAHASHI K, TOTH B A, OLSON J V. An automated procedure for near-real-time Kp estimates[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A10): 21017-21032 doi: 10.1029/2000JA000218
    [5]
    LUO B, LIU S, GONG J. Two empirical models for short-term forecast of Kp[J]. Space Weather, 2017, 15(3): 503-516 doi: 10.1002/2016SW001585
    [6]
    COSTELLO K A. Moving the Rice MSFM into A Real-Time Forecast Mode Using Solar Wind Driven Forecast Modules[D]. Houston: Rice University, 1998
    [7]
    BALA R, REIFF P. Improvements in short-term forecasting of geomagnetic activity[J]. Space Weather, 2012, 10(6): S06001
    [8]
    BALA R, REIFF P H, LANDIVAR J E. Real-time prediction of magnetospheric activity using the Boyle Index[J]. Space Weather, 2009, 7(4): S04003
    [9]
    AYALA SOLARES J R, WEI H L, BOYNTON R J, et al. Modeling and prediction of global magnetic disturbance in near-earth space: a case study for Kp index using NARX models[J]. Space Weather, 2016, 14(10): 899-916 doi: 10.1002/2016SW001463
    [10]
    WING S, JOHNSON J R, JEN J, et al. Kp forecast models[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A4): A04203
    [11]
    TAN Y, HU Q H, WANG Z, et al. Geomagnetic index Kp forecasting with LSTM[J]. Space Weather, 2018, 16(4): 406-416 doi: 10.1002/2017SW001764
    [12]
    WANG J J, ZHONG Q Z, LIU S Q, et al. Statistical analysis and verification of 3-hourly geomagnetic activity probability predictions[J]. Space Weather, 2015, 13(12): 831-852 doi: 10.1002/2015SW001251
    [13]
    刘杨, 罗冰显, 刘四清, 等. 基于神经网络方法的Kp预报模型[J]. 载人航天, 2013, 19(2): 70-80 doi: 10.3969/j.issn.1674-5825.2013.02.011

    LIU Yang, LUO Bingxian, LIU Siqing, et al. Kp forecast models based on neural networks[J]. Manned Spaceflight, 2013, 19(2): 70-80 doi: 10.3969/j.issn.1674-5825.2013.02.011
    [14]
    JOHNSON J R, WING S. A solar cycle dependence of nonlinearity in magnetospheric activity[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A4): A04211
    [15]
    LE G M, CAI Z Y, WANG H N, et al. Solar cycle distribution of great geomagnetic storms[J]. Astrophysics and Space Science, 2012, 339(1): 151-156 doi: 10.1007/s10509-011-0960-y
    [16]
    PERREAULT P, AKASOFU S I. A study of geomagnetic storms[J]. Geophysical Journal International, 1978, 54(2): 547-573
    [17]
    KAN J R, LEE L C. Energy coupling function and solar wind-magnetosphere dynamo[J]. Geophysical Research Letters, 1979, 6(7): 577-580 doi: 10.1029/GL006i007p00577
    [18]
    THOMSEN M F. Why Kp is such a good measure of magnetospheric convection[J]. Space Weather, 2004, 2(11): S11004
    [19]
    BARGATZE L F, BAKER D N, MCPHERRON R L, et al. Magnetospheric impulse response for many levels of geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 1985, 90(A7): 6387-6394 doi: 10.1029/JA090iA07p06387
    [20]
    徐文耀. 太阳风–磁层–电离层耦合过程中的能量收支[J]. 空间科学学报, 2011, 31(1): 1-14 doi: 10.11728/cjss2011.01.001

    XU Wenyao. Energy budget in the coupling processes of the solar wind, magnetosphere and ionosphere[J]. Chinese Journal of Space Science, 2011, 31(1): 1-14 doi: 10.11728/cjss2011.01.001
    [21]
    JIAO Q R, LIU W L, ZHANG D J, et al. Relation between latitude-dependent sunspot data and near-earth solar wind speed[J]. The Astrophysical Journal, 2023, 958(1): 70 doi: 10.3847/1538-4357/acfc21
    [22]
    KING J H, PAPITASHVILI N E. Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A2): A02104
    [23]
    WOLF W. Abstract of his latest Results[J]. Monthly Notices of the Royal Astronomical Society, 1861, 21(3): 77-78 doi: 10.1093/mnras/21.3.77
    [24]
    BIAU G, CADRE B, ROUVIÈRE L. Accelerated gradient boosting[J]. Machine Learning, 2019, 108(6): 971-992 doi: 10.1007/s10994-019-05787-1
    [25]
    FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232 doi: 10.1214/aos/1013203450
    [26]
    NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in Neurorobotics, 2013, 7: 21
    [27]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32 doi: 10.1023/A:1010933404324
    [28]
    HE J S, MARSCH E, TU C Y, et al. Intermittent outflows at the edge of an active region: a possible source of the solar wind[J]. Astronomy & Astrophysics, 2010, 516: A14 doi: 10.1051/0004-6361/200913712
    [29]
    KOJIMA M, FUJIKI K, OHMI T, et al. Low-speed solar wind from the vicinity of solar active regions[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A8): 16993-17003 doi: 10.1029/1999ja900177
    [30]
    ZANGRILLI L, POLETTO G. Evolution of active region outflows throughout an active region lifetime[J]. Astronomy & Astrophysics, 2016, 594: A40 doi: 10.1051/0004-6361/201628421
    [31]
    FU H, LI B, LI X, et al. Coronal sources and in situ properties of the solar winds sampled by ACE during 1999-2008[J]. Solar Physics, 2015, 290(5): 1399-1415 doi: 10.1007/s11207-015-0689-9
    [32]
    . BOBERG F, WINTOFT P, LUNDSTEDT H. Real time Kp predictions from solar wind data using neural networks[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2000, 25 (4): 275-280
    [33]
    BERGIN A, CHAPMAN S C, MOLONEY N R, et al. Variation of geomagnetic index empirical distribution and burst statistics across successive solar cycles[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): e2021JA029986 doi: 10.1029/2021JA029986
    [34]
    张典钧, 刘文龙, 杜俊峰, 等. 行星际激波导致内磁层脉冲电场的模拟研究[J]. 地球物理学报, 2023, 66(11): 4429-4436 doi: 10.6038/cjg2022Q0701

    ZHANG Dianjun, LIU Wenlong, DU Junfeng, et al. Simulation study on the Impulsive Electric Field induced by an interplanetary shock[J]. Chinese Journal of Geophysics, 2023, 66(11): 4429-4436 doi: 10.6038/cjg2022Q0701
    [35]
    SEXTON E S, NYKYRI K, MA X Y. Kp forecasting with a recurrent neural network[J]. Journal of Space Weather and Space Climate, 2019, 9: A19 doi: 10.1051/swsc/2019020
    [36]
    王子思禹, 师立勤, 刘四清, 等. 基于机器学习相似度算法的Kp指数预报[J]. 空间科学学报, 2022, 42(2): 199-205. DOI: 10.11728/cjss2022.02.210316030

    WANG Zisiyu, SHI Liqin, LIU Siqing, et al. Kp index prediction based on similarity algorithm of machine learning[J]. Chinese Journal of Space Science, 2022, 42(2): 199-205. DOI: 10.11728/cjss2022.02.210316030
    [37]
    GONZALEZ W D, GONZALEZ A L C, TSURUTANI B T. Dual-peak solar cycle distribution of intense geomagnetic storms[J]. Planetary and Space Science, 1990, 38(2): 181-187 doi: 10.1016/0032-0633(90)90082-2
    [38]
    CROOKER N U, GRINGAUZ K I. On the low correlation between long-term averages of solar wind speed and geomagnetic activity after 1976[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A1): 59-62 doi: 10.1029/92JA01978
    [39]
    PAPITASHVILI V O, PAPITASHVILI N E, KING J H. Solar cycle effects in planetary geomagnetic activity: analysis of 36-year long OMNI dataset[J]. Geophysical Research Letters, 2000, 27(17): 2797-2800 doi: 10.1029/2000GL000064
    [40]
    GARRETT H B, DESSLER A J, HILL T W. Influence of solar wind variability on geomagnetic activity[J]. Journal of Geophysical Research, 1974, 79(31): 4603-4610 doi: 10.1029/JA079i031p04603
    [41]
    LIU W, SARRIS T E, LI X, et al. Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A12): A12201
    [42]
    MAYAUD P N. Derivation, Meaning, and Use of Geomagnetic Indices[M]. Washington: American Geophysical Union, 1980
    [43]
    ZHANG D J, LIU W L, DU J F, et al. Response of electric field in terrestrial magnetosphere to interplanetary shock[J]. The Astrophysical Journal, 2022, 938(1): 70 doi: 10.3847/1538-4357/ac90cc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article Views(380) PDF Downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return