Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
YANG Lixian, LIU Si, GAO Zhonglei, ZHOU Yaxiong, GAO Yang, WANG Bowen, JIN Yuyue. Statistical Study on Propagation Characteristics of Chorus in the Earth’s Magnetosphere (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 998-1005 doi: 10.11728/cjss2024.06.2024-yg27
Citation: YANG Lixian, LIU Si, GAO Zhonglei, ZHOU Yaxiong, GAO Yang, WANG Bowen, JIN Yuyue. Statistical Study on Propagation Characteristics of Chorus in the Earth’s Magnetosphere (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 998-1005 doi: 10.11728/cjss2024.06.2024-yg27

Statistical Study on Propagation Characteristics of Chorus in the Earth’s Magnetosphere

doi: 10.11728/cjss2024.06.2024-yg27 cstr: 32142.14.cjss.2024-yg27
  • Received Date: 2024-10-05
  • Accepted Date: 2024-11-15
  • Rev Recd Date: 2024-11-07
  • Available Online: 2024-11-15
  • The frequency and normal angle of chorus waves are the key parameters affecting its interaction with electrons. Statistical analysis of Van Allen satellite data from 1 January 2013 to 31 December 2015, indicates that the strong chorus waves (>7×10–4 mV2·m–2·Hz–1) tend to appear in a narrower frequency range (0.3~0.4 fce) at normal angle θ around 35°. As L increases, the trend of narrowing chorus wave spectrum at θ≈35° becomes more pronounced. From the night to the dawn (21:00 MLT-09:00 MLT), chorus waves can be observed within a frequency range of 0.1~0.8 fce, but the spectral width of chorus waves at θ≈35° on the nightside is narrower than that on the dawn. From the morning to the dusk (09:00 MLT-21:00 MLT), the electric power spectral density of chorus waves decreases significantly, mainly manifesting as lower band chorus waves with oblique propagation (θ>60°). With increasing magnetic latitude (λMLAT), the upper band chorus waves diminish rapidly, and the electric power spectral density of the lower band chorus waves at θ≈35° also gradually decreases. This study reveals the distribution characteristics of chorus wave intensity in terms of frequency and the normal angle in different regions, providing crucial information for constructing a more accurate global model of chorus wave-electron interactions.

     

  • loading
  • [1]
    BURTIS W J, HELLIWELL R A. Banded chorus—A new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3[J]. Journal of Geophysical Research, 1969, 74(11): 3002-3010 doi: 10.1029/JA074i011p03002
    [2]
    HELLIWELL R A. A theory of discrete VLF emissions from the magnetosphere[J]. Journal of Geophysical Research, 1967, 72(19): 4773-4790 doi: 10.1029/JZ072i019p04773
    [3]
    OMURA Y, KATOH Y, SUMMERS D. Theory and simulation of the generation of whistler-mode chorus[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A4): A04223
    [4]
    SUMMERS D, TANG R X, THORNE R M. Limit on stably trapped particle fluxes in planetary magnetospheres[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A10): A10210
    [5]
    SU Z P, ZHU H, XIAO F L, et al. Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons[J]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 4266-4273 doi: 10.1002/2014JA019919
    [6]
    AGAPITOV O, ARTEMYEV A, KRASNOSELSKIKH V, et al. Statistics of whistler-mode waves in the outer radiation belt: Cluster STAFF-SA measurements[J]. Journal of Geophysical Research: Space Physics, 2013, 118(6): 3407-3420 doi: 10.1002/jgra.50312
    [7]
    TSURUTANI B T, SMITH E J. Two types of magnetospheric ELF chorus and their substorm dependences[J]. Journal of Geophysical Research, 1977, 82(32): 5112-5128 doi: 10.1029/JA082i032p05112
    [8]
    MEREDITH N P, HORNE R B, ANDERSON R R. Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A7): 13165-13178 doi: 10.1029/2000JA900156
    [9]
    KOONS H C, ROEDER J L. A survey of equatorial magnetospheric wave activity between 5 and 8 RE[J]. Planetary and Space Science, 1990, 38(10): 1335-1341 doi: 10.1016/0032-0633(90)90136-E
    [10]
    LI W, BORTNIK J, THORNE R M, et al. Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A12): A12205
    [11]
    LI W, THORNE R M, ANGELOPOULOS V, et al. Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft[J]. Geophysical Research Letters, 2009, 36(9): L09104
    [12]
    TSURUTANI B T, SMITH E J. Postmidnight chorus: a substorm phenomenon[J]. Journal of Geophysical Research, 1974, 79(1): 118-127 doi: 10.1029/JA079i001p00118
    [13]
    OMURA Y, HIKISHIMA M, KATOH Y, et al. Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A7): A07217
    [14]
    LIU K J, GARY S P, WINSKE D. Excitation of banded whistler waves in the magnetosphere[J]. Geophysical Research Letters, 2011, 38(14): L14108
    [15]
    SUMMERS D, MA C, MEREDITH N P, et al. Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm[J]. Geophysical Research Letters, 2002, 29(24): 2174
    [16]
    THORNE R M, LI W, NI B, et al. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus[J]. Nature, 2013, 504(7480): 411-414 doi: 10.1038/nature12889
    [17]
    SU Z P, XIAO F L, ZHENG H N, et al. Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes[J]. Geophysical Research Letters, 2014, 41(2): 229-235 doi: 10.1002/2013GL058912
    [18]
    XIAO F L, YANG C, HE Z G, et al. Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2014, 119(5): 3325-3332 doi: 10.1002/2014JA019822
    [19]
    HE Q, LIU S, XIAO F L, et al. Observations and parametric study on the role of plasma density on extremely low-frequency chorus wave generation[J]. Science China Technological Sciences, 2022, 65(11): 2649-2657 doi: 10.1007/s11431-021-2030-7
    [20]
    HORNE R B, THORNE R M, SHPRITS Y Y, et al. Wave acceleration of electrons in the Van Allen radiation belts[J]. Nature, 2005, 437(7056): 227-230 doi: 10.1038/nature03939
    [21]
    Reeves G D, SPENCE H E, HENDERSON M G, et al. Electron acceleration in the heart of the Van Allen radiation belts[J]. Science, 2013, 341(6149): 991-994 doi: 10.1126/science.1237743
    [22]
    TU W, CUNNINGHAM G S, CHEN Y, et al. Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen probes[J]. Geophysical Research Letters, 2014, 41(5): 1359-1366 doi: 10.1002/2013GL058819
    [23]
    SUMMERS D, MA C, MEREDITH N P, et al. Modeling outer-zone relativistic electron response to whistler-mode chorus activity during substorms[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(2): 133-146 doi: 10.1016/j.jastp.2003.09.013
    [24]
    SUMMERS D, NI B B, MEREDITH N P. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A4): A04207
    [25]
    XIAO F L, ZONG Q G, CHEN L X. Pitch-angle distribution evolution of energetic electrons in the inner radiation belt and slot region during the 2003 Halloween storm[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A1): A01215
    [26]
    XIAO F L, SU Z P, ZHENG H N, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03201
    [27]
    MIYOSHI Y, KATOH Y, NISHIYAMA T, et al. Time of flight analysis of pulsating aurora electrons, considering wave-particle interactions with propagating whistler mode waves[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10312
    [28]
    NISHIMURA Y, BORTNIK J, LI W, et al. Identifying the Driver of Pulsating Aurora[J]. Science, 2010, 330(6000): 81-84 doi: 10.1126/science.1193186
    [29]
    THORNE R M. Radiation belt dynamics: The importance of wave-particle interactions[J]. Geophysical Research Letters, 2010, 37(22): L22107
    [30]
    GOLDSTEIN B E, TSURUTANI B T. Wave normal directions of chorus near the equatorial source region[J]. Journal of Geophysical Research: Space Physics, 1984, 89(A5): 2789-2810 doi: 10.1029/JA089iA05p02789
    [31]
    BRENEMAN A W, KLETZING C A, PICKETT J, et al. Statistics of multispacecraft observations of chorus dispersion and source location[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A6): A06202
    [32]
    AGAPITOV O, KRASNOSELSKIKH V, KHOTYAINTSEV Y V, et al. Correction to “a statistical study of the propagation characteristics of whistler waves observed by Cluster”[J]. Geophysical Research Letters, 2012, 39(24): L24102
    [33]
    LU Q M, KE Y G, WANG X Y, et al. Two-dimensional gcPIC simulation of rising-tone chorus waves in a dipole magnetic field[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4157-4167 doi: 10.1029/2019JA026586
    [34]
    KE Y G, GAO X L, LU Q M, et al. Deformation of electron distributions due to Landau trapping by the whistler-mode wave[J]. Geophysical Research Letters, 2022, 49(3): e2021GL096428 doi: 10.1029/2021GL096428
    [35]
    MAUK B H, FOX N J, KANEKAL S G, et al. Science objectives and rationale for the radiation belt storm probes mission[J]. Space Science Reviews, 2013, 179(1/2/3/4): 3-27
    [36]
    KURTH W S, DE PASCUALE S, FADEN J B, et al. Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen probes[J]. Journal of Geophysical Research: Space Physics, 2015, 120(2): 904-914 doi: 10.1002/2014JA020857
    [37]
    LI W O, SANTOLIK J, BORTNIK R M, et al. New chorus wave properties near the equator from Van Allen probes wave observations[J]. Geophysical Research Letters, 2016, 43: 4725-4735 doi: 10.1002/2016GL068780
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article Views(264) PDF Downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return