Citation: | TANG Lei, ZHANG Qiaofeng, LU Quanming, GAO Xinliang, KE Yangguang. Experimental Study on the Properties of Helicon Mode Whistler Waves (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1006-1011 doi: 10.11728/cjss2024.06.2024-yg30 |
[1] |
STENZEL R L. Whistler waves in space and laboratory plasmas[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A7): 14379-14395 doi: 10.1029/1998JA900120
|
[2] |
LI W, THORNE R M, BORTNIK J, et al. Typical properties of rising and falling tone chorus waves[J]. Geophysical Research Letters, 2011, 38(14): L14103
|
[3] |
KHOTYAINTSEV Y V, CULLY C M, VAIVADS A, et al. Plasma jet braking: energy dissipation and nonadiabatic electrons[J]. Physical Review Letters, 2011, 106(16): 165001 doi: 10.1103/PhysRevLett.106.165001
|
[4] |
ZHANG X, ANGELOPOULOS V, ARTEMYEV A V, et al. Whistler and electron firehose instability control of electron distributions in and around dipolarizing flux bundles[J]. Geophysical Research Letters, 2018, 45(18): 9380-9389 doi: 10.1029/2018GL079613
|
[5] |
WILDER F D, ERGUN R E, GOODRICH K A, et al. Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission[J]. Geophysical Research Letters, 2016, 43(12): 5909-5917 doi: 10.1002/2016GL069473
|
[6] |
CONTEL O L, RETINÒ A, BREUILLARD H, et al. Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing[J]. Geophysical Research Letters, 2016, 43(12): 5943-5952 doi: 10.1002/2016GL068968
|
[7] |
WILSON III L B, SIBECK D G, BRENEMAN A W, et al. Quantified energy dissipation rates in the terrestrial bow shock: 1. Analysis techniques and methodology[J]. Journal of Geophysical Research: Space Physics, 2014, 119(8): 6455-6474 doi: 10.1002/2014JA019929
|
[8] |
TONG Y G, VASKO I Y, ARTEMYEV A V, et al. Statistical study of whistler waves in the solar wind at 1 au[J]. The Astrophysical Journal, 2019, 878(1): 41 doi: 10.3847/1538-4357/ab1f05
|
[9] |
BORTNIK J, CHEN L, LI W, et al. Modeling the evolution of chorus waves into plasmaspheric hiss[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A8): A08221
|
[10] |
LI W, THORNE R M, BORTNIK J, et al. Characteristics of hiss-like and discrete whistler-mode emissions[J]. Geophysical Research Letters, 2012, 39(18): L18106
|
[11] |
MEREDITH N P, HORNE R B, GLAUERT S A, et al. Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A8): A08214
|
[12] |
SU Z P, XIAO F L, ZHENG H N, et al. STEERB: a three-dimensional code for storm-time evolution of electron radiation belt[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A9): A09208
|
[13] |
NI B B, BORTNIK J, THORNE R M, et al. Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss[J]. Journal of Geophysical Research: Space Physics, 2013, 118(12): 7740-7751 doi: 10.1002/2013JA019260
|
[14] |
LYONS L R, THORNE R M, KENNEL C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere[J]. Journal of Geophysical Research, 1972, 77(19): 3455-3474 doi: 10.1029/JA077i019p03455
|
[15] |
ABEL B, THORNE R M. Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A2): 2385-2396 doi: 10.1029/97JA02919
|
[16] |
LAM M M, HORNE R B, MEREDITH N P, et al. Origin of energetic electron precipitation >30 keV into the atmosphere[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A4): 2009JA014619 doi: 10.1029/2009JA014619
|
[17] |
THORNE R M, NI B B, TAO X, et al. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation[J]. Nature, 2010, 467(7318): 943-946 doi: 10.1038/nature09467
|
[18] |
KASAHARA S, MIYOSHI Y, YOKOTA S, et al. Pulsating aurora from electron scattering by chorus waves[J]. Nature, 2018, 554(7692): 337-340 doi: 10.1038/nature25505
|
[19] |
URRUTIA J M, STENZEL R L. Helicons in uniform fields. I. Wave diagnostics with hodograms[J]. Physics of Plasmas, 2018, 25(3): 032111 doi: 10.1063/1.5017625
|
[20] |
STENZEL R L. Whistler waves with angular momentum in space and laboratory plasmas and their counterparts in free space[J]. Advances in Physics: X, 2016, 1(4): 687-710 doi: 10.1080/23746149.2016.1240017
|
[21] |
CHEN F F. Helicon discharges and sources: a review[J]. Plasma Sources Science and Technology, 2015, 24(1): 014001 doi: 10.1088/0963-0252/24/1/014001
|
[22] |
STENZEL R L, URRUTIA J M. Helicons in Unbounded Plasmas[J]. Physical Review Letters, 2015, 114(20): 205005 doi: 10.1103/PhysRevLett.114.205005
|
[23] |
KLOZENBERG J P, MCNAMARA B, THONEMANN P C. The dispersion and attenuation of helicon waves in a uniform cylindrical plasma[J]. Journal of Fluid Mechanics, 1965, 21(3): 545-563 doi: 10.1017/S0022112065000320
|
[24] |
STENZEL R L, URRUTIA J M. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes[J]. Physics of Plasmas, 2016, 23(8): 082120 doi: 10.1063/1.4960666
|
[25] |
STENZEL R L. Whistler modes excited by magnetic antennas: a review[J]. Physics of Plasmas, 2019, 26(8): 080501 doi: 10.1063/1.5097852
|
[26] |
KE Y G, CHEN L J, GAO X L, et al. Whistler-mode waves trapped by density irregularities in the Earth’s magnetosphere[J]. Geophysical Research Letters, 2021, 48(7): e2020GL092305 doi: 10.1029/2020GL092305
|
[27] |
CHEN R, GAO X L, LU Q M, et al. In situ observations of whistler-mode chorus waves guided by density ducts[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028814 doi: 10.1029/2020JA028814
|