Citation: | WANG Wei, WANG Jiqin, JI Kaijun, CHENG Xuewu, LIN Xin, YANG Yong, LI Faquan. Detection of Tonga Volcanic Ash Using Middle and Upper Atmospheric Lidar (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 729-735 doi: 10.11728/cjss2025.03.2024-0046 |
[1] |
SALIKHOV N, SHEPETOV A, PAK G, et al. Disturbances of Doppler frequency shift of ionospheric signal and of telluric current caused by atmospheric waves from explosive eruption of Hunga Tonga Volcano on January 15, 2022[J]. Atmosphere, 2023, 14(2): 245 doi: 10.3390/atmos14020245
|
[2] |
PRADIPTA R, CARTER B A, CURRIE J L, et al. On the propagation of traveling ionospheric disturbances From the Hunga Tonga-Hunga Ha’apai volcano eruption and their possible connection with Tsunami waves[J]. Geophysical Research Letters, 2023, 50(6): e2022GL101925 doi: 10.1029/2022gl101925
|
[3] |
DOLGIKH G I, DOLGIKH S G, OVCHARENKO V V. Atmospheric and deformation disturbances caused by the Hunga-Tonga-Hunga-Ha'apai Volcano[J]. Doklady Earth Sciences, 2022, 505(2): 575-577 doi: 10.1134/s1028334x22080074
|
[4] |
DENAMIEL C, VASYLKEVYCH S, ŽAGAR N, et al. Destructive potential of planetary Meteotsunami waves beyond the Hunga Tonga-Hunga Ha’apai Volcano eruption[J]. Bulletin of the American Meteorological Society, 2023, 104(1): E178-E191 doi: 10.1175/bams-d-22-0164.1
|
[5] |
RAMÍREZ-HERRERA M T, COCA O, VARGAS-ESPINOSA V. Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha’apai Volcano eruption, Tonga[J]. Pure and Applied Geophysics, 2022, 179(4): 1117-1137 doi: 10.1007/s00024-022-03017-9
|
[6] |
GAVRILOV B G, POKLAD Y V, RYAKHOVSKY I A, et al. Global electromagnetic disturbances caused by the eruption of the Tonga Volcano on 15 January 2022[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(23): e2022JD037411 doi: 10.1029/2022jd037411
|
[7] |
THOMPSON D W J, WALLACE J M, JONES D, et al. Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and insights[J]. Journal of Climate, 2009, 22(22): 6120-6141 doi: 10.1175/2009jcli3089.1
|
[8] |
MADONIA P, BONACCORSO A, BONFORTE A, et al. Propagation of perturbations in the lower and upper atmosphere over the central Mediterranean, driven by the 15 January 2022 Hunga Tonga-Hunga Ha’apai Volcano explosion[J]. Atmosphere, 2023, 14(1): 65 doi: 10.3390/atmos14010065
|
[9] |
TAHA G, LOUGHMAN R, COLARCO R, et al. Tracking the 2022 Hunga Tonga-Hunga Ha’apai aerosol cloud in the upper and middle stratosphere using space-based observations[J]. Geophysical Research Letters, 2022, 49(19): e2022GL100091 doi: 10.1029/2022gl100091
|
[10] |
SOLOVIEVA M S, SHALIMOV S L. Disturbances in the Lower Ionosphere after the Eruption of the Hunga-Tonga-Hunga-Ha’apai Volcano on January 15, 2022, Recorded by the Subionospheric VLF Radio Signals[J]. Doklady Earth Sciences, 2022, 507(2): 1080-1084 doi: 10.1134/s1028334x22600840
|
[11] |
RAJESH K, LIN C C H, LIN J T, et al. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm[J]. Geophysical Research Letters, 2022, 49(15): e2022GL099798 doi: 10.1029/2022gl099798
|
[12] |
LIN J T, RAJESH P K, LIN C C H, et al. Rapid conjugate appearance of the Giant Ionospheric lamb wave signatures in the Northern hemisphere After Hunga-Tonga Volcano eruptions[J]. Geophysical Research Letters, 2022, 49(8): e2022GL098222 doi: 10.1029/2022gl098222
|
[13] |
LIU X, XU J Y, YUE J, et al. Strong gravity waves associated with Tonga volcano eruption revealed by SABER observations[J]. Geophysical Research Letters, 2022, 49(10): e2022GL098339 doi: 10.1029/2022gl098339
|
[14] |
KULICHKOV S N, CHUNCHUZOV I P, POPOV O E, et al. Acoustic-gravity lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano, its energy release and impact on aerosol concentrations and Tsunami[J]. Pure and Applied Geophysics, 2022, 179(5): 1533-1548 doi: 10.1007/s00024-022-03046-4
|
[15] |
DOLGIKH G, DOLGIKH S, OVCHARENKO V. Initiation of infrasonic geosphere waves caused by explosive eruption of Hunga Tonga-Hunga Haʻapai Volcano[J]. Journal of Marine Science and Engineering, 2022, 10(8): 10611 doi: 10.3390/jmse10081061
|
[16] |
程学武, 宋娟, 李发泉, 等. 双波长高空探测激光雷达技术[J]. 中国激光, 2006, 33(5): 601-606 doi: 10.3321/j.issn:0258-7025.2006.05.006
CHENG Xuewu, SONG Juan, LI Faquan, et al. Dual-wavelength high altitude detecting Lidar technology[J]. Chinese Journal of Lasers, 2006, 33(5): 601-606 doi: 10.3321/j.issn:0258-7025.2006.05.006
|
[17] |
NAKAMAE K, UCHINO O, MORINO I, et al. Lidar observation of the 2011 Puyehue-Cordón Caulle volcanic aerosols at Lauder, New Zealand[J]. Atmospheric Chemistry and Physics, 2014, 14(22): 12099-12108 doi: 10.5194/acp-14-12099-2014
|
[18] |
JUNG C H, KIM Y P. Simplified analytic model to estimate the ångstrom exponent in a Junge Aerosol size distribution[J]. Environmental Engineering Science, 2010, 27(9): 789-795 doi: 10.1089/ees.2010.0030
|
[19] |
ZHUANG J, YI F. Nabro aerosol evolution observed jointly by lidars at a mid-latitude site and CALIPSO[J]. Atmospheric Environment, 2016, 140: 106-116 doi: 10.1016/j.atmosenv.2016.05.048
|