Citation: | REN Tingling, LUO Bingxian, MIAO Juan, WANG Ronglan, WANG Xin, LIU Siqing. Accuracy Assessment of the TLE-derived Orbital Atmospheric Densities (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 717-728 doi: 10.11728/cjss2025.03.2024-0060 |
[1] |
PICONE J M, EMMERT J T, LEAN J L. Thermospheric densities derived from spacecraft orbits: accurate processing of two-line element sets[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A3): A03301
|
[2] |
许晓丽, 熊永清. 基于历史TLE的空间目标轨道预报误差演化规律研究[J]. 天文学报, 2019, 60(4): 30-1-30-13
XU Xiaoli, XIONG Yongqing. Study on orbit prediction error of space objects based on historical TLE[J]. Acta Astronomica Sinica, 2019, 60(4): 30-1-30-13
|
[3] |
BOWMAN B R, TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu: AIAA, 2008
|
[4] |
BRUINSMA S, BONIFACE C. The operational and research DTM-2020 thermosphere models[J]. Journal of Space Weather and Space Climate, 2021, 11: 47 doi: 10.1051/swsc/2021032
|
[5] |
EMMERT J T, DROB D P, PICONE J M, et al. NRLMSIS 2.0: a whole-atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 2021, 8(3): e2020EA001321 doi: 10.1029/2020EA001321
|
[6] |
任廷领, 苗娟, 刘四清, 等. 利用卫星两行轨道根数反演热层密度[J]. 空间科学学报, 2014, 34(4): 426-433 doi: 10.11728/cjss2014.04.426
REN Tingling, MIAO Juan, LIU Siqing, et al. Research on thermospheric densities derived from two-line element sets[J]. Chinese Journal of Space Science, 2014, 34(4): 426-433 doi: 10.11728/cjss2014.04.426
|
[7] |
GONDELACH D J, LINARES R. Real-time thermospheric density estimation via two-line element data assimilation[J]. Space Weather, 2020, 18(2): e2019SW002356 doi: 10.1029/2019SW002356
|
[8] |
EMMERT J T, DHADLY M S, SEGERMAN A M. A globally averaged thermospheric density data set derived from two-line orbital element sets and special perturbations state vectors[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2021JA029455 doi: 10.1029/2021JA029455
|
[9] |
DOORNBOS E, KLINKRAD H, VISSER P. Use of two-line element data for thermosphere neutral density model calibration[J]. Advances in Space Research, 2008, 41(7): 1115-1122 doi: 10.1016/j.asr.2006.12.025
|
[10] |
BERNSTEIN V, PILINSKI M, SUTTON E. Assessing thermospheric densities derived from orbital drag data[C]//31st AAS/AIAA Space Flight Mechanics Meeting. Austin, Texas: AIAA, 2023
|
[11] |
PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA 15-1-SIA 15-16
|
[12] |
PICONE J M, EMMERT J T, LEAN J L. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A3): A03301
|
[13] |
REN T L, LIU S Q, MIAO J, et al. Effects of geomagnetic storms on the accuracy of orbit-derived atmospheric density measurements[J]. Advances in Space Research, 2022, 70(10): 2818-2829 doi: 10.1016/j.asr.2022.09.036
|
[14] |
BOWMAN B R. True satellite ballistic coefficient determination for HASDM[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey: AIAA, 2002
|
[15] |
EMMERT J T, MEIER R R, PICONE J M, et al. Thermospheric density 2002-2004: TIMED/GUVI dayside limb observations and satellite drag[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A10): A10S16
|
[16] |
LEAN J L, PICONE J M, EMMERT J T, et al. Thermospheric densities derived from spacecraft orbits: application to the Starshine satellites[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A4): A04301
|
[17] |
LU Z J, HU W D. Estimation of ballistic coefficients of space debris using the ratios between different objects[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1204-1216 doi: 10.1016/j.cja.2017.03.009
|
[18] |
REIGBER C, LÜHR H, SCHWINTZER P. CHAMP mission status[J]. Advances in Space Research, 2002, 30(2): 129-134 doi: 10.1016/S0273-1177(02)00276-4
|
[19] |
TAPLEY B D, BETTADPUR S, WATKINS M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607
|
[20] |
ZAGLAUER A. Swarm satellites status[C]//ESA’s Second Swarm International Science Meeting. Potsdam, Germany: GFZ, 2009
|
[21] |
BRUINSMA S, FORBES J M, NEREM R S, et al. Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A6): A06303
|
[22] |
CALABIA A, TANG G S, JIN S G. Assessment of new thermospheric mass density model using NRLMSISE-00 model, GRACE, Swarm-C, and APOD observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 199: 105207 doi: 10.1016/j.jastp.2020.105207
|
[23] |
LEI J H, MATSUO T, DOU X K, et al. Annual and semiannual variations of thermospheric density: EOF analysis of CHAMP and GRACE data[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A1): A01310
|
[24] |
BRUINSMA S L, DOORNBOS E, BOWMAN B R. Validation of GOCE densities and evaluation of thermosphere models[J]. Advances in Space Research, 2014, 54(4): 576-585 doi: 10.1016/j.asr.2014.04.008
|
[25] |
TOBISKA W K, BOWMAN B R, BOUWER S D, et al. The SET HASDM density database[J]. Space Weather, 2021, 19(4): e2020SW002682 doi: 10.1029/2020SW002682
|
[26] |
MATSUO T, RICHMOND A D, NYCHKA D W. Modes of high-latitude electric field variability derived from DE-2 measurements: empirical Orthogonal Function (EOF) analysis[J]. Geophysical Research Letters, 2002, 29(7): 1107
|
[27] |
MATSUO T, FORBES J M. Principal modes of thermospheric density variability: empirical orthogonal function analysis of CHAMP 2001-2008 data[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A7): A07309
|