Citation: | JIANG Fang, MAO Tian, FU Liping, WANG Jinsong, HU Xiuqing, ZHANG Xiaoxin, WANG Yungang, JIA Nan, WANG Tianfang. Study of FY-3D Ionospheric Photometer (IPM) Response to the Extreme Magnetic Storm on 11 May 2024 (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-10 doi: 10.11728/cjss2025.04.2024-0079 |
[1] |
AKASOFU S I. Prediction of development of geomagnetic storms using the solar wind-magnetosphere energy coupling function ϵ[J]. Planetary and Space Science, 1981, 29(11): 1151-1158 doi: 10.1016/0032-0633(81)90121-5
|
[2] |
CANDER L R, HARALAMBOUS H. On the importance of total electron content enhancements during the extreme solar minimum[J]. Advances in Space Research, 2011, 47(2): 304-311 doi: 10.1016/j.asr.2010.08.026
|
[3] |
BURNS A G, KILLEEN T L, CARIGNAN G R, et al. Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A8): 14661-14671. doi: 10.1029/94JA03235
|
[4] |
KONSTANTIN R, MAKSIM K, VLADIMIR K, et al. After-effects of geomagnetic storms: statistical analysis and theoretical explanation[J]. Solar-Terrestrial Physics, 2018, 4(4): 26-32. doi: 10.12737/stp-44201804
|
[5] |
STRICKLAND D J, DANIELL R E, CRAVEN J D. Negative ionospheric storm coincident with DE 1-observed thermospheric disturbance on October 14, 1981[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A10): 21049-21062 doi: 10.1029/2000JA000209
|
[6] |
HUANG C M, CHEN M Q, LIU J Y. Ionospheric positive storm phases at the magnetic equator close to sunset[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A7): A07315. doi: 10.1029/2009JA014936
|
[7] |
KUAI J W, LI Q L, ZHONG J H, et al. The ionosphere at middle and low latitudes under geomagnetic quiet time of December 2019[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA028964. doi: 10.1029/2020JA028964
|
[8] |
WAN Q T, MA G Y, MARUYAMA T, et al. Characteristics of ionospheric storm on October 13, 2016 at the Greenwich meridian[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2020JA028823. doi: 10.1029/2020JA028823
|
[9] |
Zhang Y L, Paxton Larry, Schaefer Robert. Ionospheric and Thermospheric Contributions in TIMED/GUVI O 135.6 nm Radiances[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): 1-13
|
[10] |
DYMOND K F, THONNARD S E, MCCOY R P, et al. An optical remote sensing technique for determining nighttime F region electron density[J]. Radio Science, 1997, 32(5): 1985-1996 doi: 10.1029/97RS01887
|
[11] |
STRICKLAND D J, COX R J, MEIER R R, et al. Global O/N2 derived from DE 1 FUV dayglow data: technique and examples from two storm periods[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A3): 4251-4266 doi: 10.1029/98JA02817
|
[12] |
KIL H, LEE W K, SHIM J, et al. The effect of the 135.6 nm emission originated from the ionosphere on the TIMED/GUVI O/N2 ratio[J]. Journal of Geophysical Research: Space Physics, 2013, 118(2): 859-865. doi: 10.1029/2012JA018112
|
[13] |
JIANG F, MAO T, ZHANG X X, et al. Observation of thermosphere and ionosphere using the ionosphere PhotoMeter (IPM) on the Chinese meteorological satellite FY-3D[J]. Advances in Space Research, 2020, 66(9): 2151-2167 doi: 10.1016/j.asr.2020.07.027
|
[14] |
JIANG F, MAO T, ZHANG X X, et al. The day-glow data application of FY-3D IPM in monitoring O/N2[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 205: 105309 doi: 10.1016/j.jastp.2020.105309
|
[15] |
YOUNAS W, KHAN M, AMORY-MAZAUDIER C, et al. Middle and low latitudes hemispheric asymmetries in ∑O/N2 and TEC during intense magnetic storms of solar cycle 24[J]. Advances in Space Research, 2022, 69(1): 220-235 doi: 10.1016/j.asr.2021.10.027
|
[16] |
STRICKLAND D J, EVANS J S, PAXTON L J. Satellite remote sensing of thermospheric O/N2 and solar EUV: 1. Theory[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A7): 12217-12226 doi: 10.1029/95JA00574
|
[17] |
王大鑫, 付利平, 江芳, 等. 利用FY-3(D)卫星电离层光度计数据反演电离层O/N2[J]. 光谱学与光谱分析, 2021, 41(4): 1004-1010
WANG Daxin, FU Liping, WANG Fang, et al. Inversion of ionospheric O/N2 by using FY-3D ionospheric photometer data[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1004-1010
|
[18] |
ZHANG Y, PAXTON L J, KOZYRA J U, et al. Nightside thermospheric FUV emissions due to energetic neutral atom precipitation during magnetic superstorms[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A9): A09307. doi: 10.1029/2005JA011152
|
[19] |
TINSLEY B A, ROHRBAUGH R P, RASSOUL H, et al. Spectral characteristics of two types of low latitude aurorae[J]. Geophysical Research Letters, 1984, 11(6): 572-575. doi: 10.1029/GL011i006p00572
|
[20] |
MEIER R R, WELLER C S. Observations of equatorial EUV bands: evidence for low-altitude precipitation of ring current helium[J]. Journal of Geophysical Research, 1975, 80(19): 2813-2818. doi: 10.1029/JA080i019p02813
|
[21] |
MENDILLO M. Storms in the ionosphere: patterns and processes for total electron content[J]. Reviews of Geophysics, 2006, 44(4): RG4001. doi: 10.1029/2005RG000193
|
[22] |
PARESCE F. EUV observations of the equatorial aurora[J]. Journal of Geophysical Research: Space Physics, 1979, 84(A8): 4409-4412. doi: 10.1029/JA084iA08p04409
|
[23] |
STEPHAN A W, CHAKRABARTI S, COTTON D M. Evidence of ENA precipitation in the EUV dayglow[J]. Geophysical Research Letters, 2000, 27(18): 2865-2868. doi: 10.1029/2000GL000040
|
[24] |
STEPHAN A W, CHAKRABARTI S, DYMOND K F, et al. Far ultraviolet equatorial aurora during geomagnetic storms as observed by the low-resolution airglow and aurora spectrograph[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A12): 30323-30330. doi: 10.1029/2001JA001103
|