Citation: | MO Xingjian, LIANG Wei, ZHAO Xianglei, LEI Xiangxu, ZHAO You. Analysis of COSMOS 1408 Debris Cloud Evolution (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-9 doi: 10.11728/cjss2025.04.2024-0089 |
[1] |
TANG Jingshi, CHENG Haowen. The origin, status and future of space debris[J]. Physics, 2021, 50(5): 317-323. DOI: 10.7693/wl20210505 (汤靖师, 程昊文. 空间碎片问题的起源、现状和发展[J]. 物理, 2021, 50(5): 317-323. DOI: 10.7693/wl20210505)
|
[2] |
MUCIACCIA A, FACCHINI L, MONTARULI M F, et al. Radar observation and recontruction of Cosmos 1408 fragmentation[J]. Journal of Space Safety Engineering, 2024, 11(1): 143-149 doi: 10.1016/j.jsse.2023.11.006
|
[3] |
ANZ-MEADOR P, OPIELA J, LIOU J C. History of on orbit satellite fragmentation, 16th Edition[R]. Houston: Johnson Space Center, 2022
|
[4] |
庞宝君, 王东方, 肖伟科, 等. 美国DMSP-F13卫星解体事件对空间碎片环境影响分析[J]. 航天器环境工程, 2015, 32(4): 349-356 doi: 10.3969/j.issn.1673-1379.2015.04.002
PANG Baojun, WANG Dongfang, XIAO Weike, et al. The influence of US satellite DMSP-F13 breakup event on space debris environment[J]. Spacecraft Environment Engineering, 2015, 32(4): 349-356 doi: 10.3969/j.issn.1673-1379.2015.04.002
|
[5] |
刁宁辉, 刘建强, 孙从容, 等. 基于SGP4模型的卫星轨道计算[J]. 遥感信息, 2012, 27(4): 64-70 doi: 10.3969/j.issn.1000-3177.2012.04.011
DIAO Ninghui, LIU Jianqiang, SUN Congrong, et al. Satellite orbit calculation based on SGP4 model[J]. Remote Sensing Information, 2012, 27(4): 64-70 doi: 10.3969/j.issn.1000-3177.2012.04.011
|
[6] |
HE C Y, LI W, HW AD, et al. Thermospheric mass density modelling during geomagnetic quiet and weakly disturbed time[J]. Atmosphere, 2024, 15(1): 72 doi: 10.3390/atmos15010072
|
[7] |
龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望[J]. 空间碎片研究, 2019, 19(3): 2-13
GONG Zizheng, ZHAO Qiuyan, LI Ming, et al. The frontier problem and prospect of space debris protection research[J]. Space Debris Research, 2019, 19(3): 2-13
|
[8] |
李明, 龚自正, 刘国青. 空间碎片监测移除前沿技术与系统发展[J]. 科学通报, 2018, 63(25): 2570-2591 doi: 10.1360/N972017-00880
LI Ming, GONG Zizheng, LIU Guoqing. Frontier technology and system development of space debris surveillance and active removal[J]. Chinese Science Bulletin, 2018, 63(25): 2570-2591 doi: 10.1360/N972017-00880
|
[9] |
PASTOR A, SIMINSKI J, ESCRIBANO G, et al. Early cataloguing of fragments from break-up events[J]. Advances in Space Research, 2023, 71(10): 4222-4238 doi: 10.1016/j.asr.2023.02.016
|
[10] |
PALMER C. Russian anti-satellite test spotlights space debris danger[J]. Engineering, 2022, 12(5): 3-5
|
[11] |
NASA International space station maneuvers to avoid Russian ASAT fragment[J]. Orbital Debris Quarterly News, 2022, 26(3): 2-4
|
[12] |
OLIVIERI L, GIACOMUZZO C, LOPRESTI S, et al. Simulation of in-space fragmentation events[J]. Aerotecnica Missili :Times New Roman;">& Spazio, 2024, 103(3): 225-232
|
[13] |
LIU Y Y, CHI R Q, HU D Q, et al. The consequences of Cosmos 1408 breakup: the optimization of the breakup model and the influence of debris clouds[J]. Acta Astronautica, 2023, 206: 156-167 doi: 10.1016/j.actaastro.2023.02.023
|
[14] |
赵广宇, 桑吉章, 陈俊宇, 等. 利用稀疏角度数据改进空间目标TLE轨道预报精度[J]. 测绘地理信息, 2021, 46(S1): 301-304 doi: 10.14188/j.2095-6045.2019214
ZHAO Guangyu, SANG Jizhang, CHEN Junyu, et al. Improving the orbit prediction accuracy for NORAD objects using sparse angles data[J]. Journal of Geomatics, 2021, 46(S1): 301-304 doi: 10.14188/j.2095-6045.2019214
|
[15] |
WANG R L, FENG S, YANG X H, et al. Breakup analysis of Cosmos 1408 satellite[J]. Journal of Space Safety Engineering, 2024, 11(2): 335-341 doi: 10.1016/j.jsse.2024.02.003
|
[16] |
NASA. International space station maneuvers to avoid another Russian ASAT fragment[J]. Orbital Debris Quarterly News, 2022, 26(4): 2-8
|
[17] |
NASA. ISS maneuvers twice in a week’s span to avoid potential collisions[J]. Orbital Debris Quarterly News, 2023, 27(2): 2-8
|
[18] |
NASA. ISS maneuvers to avoid potential collisions twice in August 2023[J]. Orbital Debris Quarterly News, 2023, 27(4): 1-2
|