Turn off MathJax
Article Contents
ZHOU Xiaoguang, YI Yujiang, SUN Zhengbo. A Two-layer Hybrid Scheduling Approach for Electromagnetic Spectrum Monitoring Satellite Mission Planning (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-13 doi: 10.11728/cjss2025.04.2024-0097
Citation: ZHOU Xiaoguang, YI Yujiang, SUN Zhengbo. A Two-layer Hybrid Scheduling Approach for Electromagnetic Spectrum Monitoring Satellite Mission Planning (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-13 doi: 10.11728/cjss2025.04.2024-0097

A Two-layer Hybrid Scheduling Approach for Electromagnetic Spectrum Monitoring Satellite Mission Planning

doi: 10.11728/cjss2025.04.2024-0097 cstr: 32142.14.cjss.2024-0097
  • Received Date: 2024-07-30
  • Accepted Date: 2025-07-10
  • Rev Recd Date: 2025-01-04
  • Available Online: 2025-01-10
  • In recent years, there has been a significant and rapid expansion in the satellite field, with a corresponding increase in the demand for Earth observation. This led to a growing need for sophisticated management of Electromagnetic Spectrum Monitoring Satellite (ESMS) missions. Neglecting to incorporate dynamic adjustments in satellite mission planning will lead to a considerable loss of time and resources. Dynamic adjustments to missions and allocation of appropriate satellite resources are crucial for the effective execution of monitoring tasks. This paper begins by developing a mission planning model that incorporates dynamic adjustments. Subsequently, we introduce a Two-Layer Hybrid Scheduling Approach (TH-SA) designed for task flexibilty. The approach uses a genetic algorithm in the first layer to deal with non-dynamically adjustable task sequences. The second layer relies on heuristic rules to plan dynamically adjustable tasks. A rule-based initialization strategy and diverse crossover patterns enhance the exploration and exploitation efficiency of the genetic algorithm, while the heuristic algorithm optimizes the scheduling of dynamically adjustable tasks through task reconfiguration and resource allocation. By categorizing and processing tasks, the algorithm enhances the efficiency of planning for dynamically adjustable tasks and ensures the completion rate of those that are not dynamically adjustable. Finally, simulation experiments confirm that the algorithm maintains high performance in task planning of varying scales, demonstrating its effectiveness in improving the performance of Electromagnetic Spectrum Monitoring Satellite task planning.

     

  • loading
  • [1]
    邱涤珊, 王慧林, 祝江汉, 等. 面向区域普查的电子侦察卫星任务调度[J]. 小型微型计算机系统, 2011, 32(2): 379-384

    QIU Dishan, WANG Huilin, ZHU Jianghan, et al. Area census-oriented electronic reconnaissance satellites scheduling technique[J]. Journal of Chinese Computer Systems, 2011, 32(2): 379-384
    [2]
    李耀东, 张静, 江建军. 多区域多维覆盖联合优化卫星任务规划[J]. 太赫兹科学与电子信息学报, 2019, 17(1): 40-45 doi: 10.11805/TKYDA201901.0040

    LI Yaodong, ZHANG Jing, JIANG Jianjun. Mission scheduling of electronic reconnaissance satellites based on multi-area[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(1): 40-45 doi: 10.11805/TKYDA201901.0040
    [3]
    杜永浩, 邢立宁, 姚锋, 等. 航天器任务调度模型、算法与通用求解技术综述[J]. 自动化学报, 2021, 47(12): 2715-2741

    DU Yonghao, XING Lining, YAO Feng, et al. Survey on models, algorithms and general techniques for spacecraft mission scheduling[J]. Acta Automatica Sinica, 2021, 47(12): 2715-2741
    [4]
    李长春, 祝江汉. 面向移动目标连续侦察的电子侦察卫星任务规划方法研究[J]. 装备指挥技术学院学报, 2011, 22(1): 67-72

    LI Changchun, ZHU Jianghan. Research on the method of electronic reconnaissance satellites mission planning for continuous reconnaissance of moving target[J]. Journal of the Academy of Equipment Command :Times New Roman;">& Technology, 2011, 22(1): 67-72
    [5]
    SONG Y J, WEI L N, YANG Q, et al. RL-GA: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem[J]. Swarm and Evolutionary Computation, 2023, 77: 101236 doi: 10.1016/j.swevo.2023.101236
    [6]
    TSENG L Y, CHEN S C. Two-phase genetic local search algorithm for the multimode resource-constrained project scheduling problem[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 848-857 doi: 10.1109/TEVC.2008.2011991
    [7]
    刘士新, 宋健海, 唐加福. 蚁群最优化——模型、算法及应用综述[J]. 系统工程学报, 2004, 19(5): 496-502 doi: 10.3969/j.issn.1000-5781.2004.05.010

    LIU Shixin, SONG Jianhai, TANG Jiafu. Ant colony optimization review: modelling, algorithms and applications[J]. Journal of Systems Engineering, 2004, 19(5): 496-502 doi: 10.3969/j.issn.1000-5781.2004.05.010
    [8]
    JIANG X M, SONG Y J, XING L N. Dual-population artificial bee colony algorithm for joint observation satellite mission planning problem[J]. IEEE Access, 2022, 10: 28911-28921. doi: 10.1109/ACCESS.2022.3157286
    [9]
    CHEN H K, TIAN Y, PEDRYCZ W, et al. Hyperplane assisted evolutionary algorithm for many-objective optimization problems[J]. IEEE Transactions on Cybernetics, 2020, 50(7): 3367-3380 doi: 10.1109/TCYB.2019.2899225
    [10]
    李夏苗, 陈新江, 伍国华, 等. 考虑断点续传的中继卫星调度模型及启发式算法[J]. 航空学报, 2019, 40(11): 269-284

    LI Xiamiao, CHEN Xinjiang, WU Guohua, el al. Scheduling model and heuristic algorithm for tracking and data relay satellite considering breakpoint transmission[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 269-284
    [11]
    CHEN X J, LI X M, WANG X W, et al. Task scheduling method for data relay satellite network considering breakpoint transmission[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 844-857 doi: 10.1109/TVT.2020.3046304
    [12]
    HE Y M, WU G H, CHEN Y W, et al. A two-stage framework and reinforcement learning-based optimization algorithms for complex scheduling problems[OL]. arXiv preprint arXiv: 2103.05847, 2021
    [13]
    李阳阳, 罗俊仁, 张万鹏, 等. 多星协同观测遗传-演进双层任务规划算法[J]. 系统工程与电子技术, 2024, 46(6): 2044-2053

    LI Yangyang, LUO Junren, ZHANG Wanpeng, et al. Genetic-evolutionary bi-level mission planning algorithm for multi-satellite cooperative observation[J]. Systems Engineering and Electronics, 2024, 46(6): 2044-2053
    [14]
    刘润滋, 马天赐, 吴伟华, 等. 基于分层强化学习的中继卫星网络任务动态调度方法[J]. 通信学报, 2023, 44(7): 207-217 doi: 10.11959/j.issn.1000-436x.2023130

    LIU Runzi, MA Tianci, WU Weihua, et al. Dynamic task scheduling method for relay satellite networks based on hierarchical reinforcement learning[J]. Journal on Communications, 2023, 44(7): 207-217 doi: 10.11959/j.issn.1000-436x.2023130
    [15]
    WANG Y, LIU D S, LIU J T. A bilevel programming model for multi-satellite cooperative observation mission planning[J]. IEEE Access, 2024, 12: 145439-145449. doi: 10.1109/ACCESS.2024.3465633
    [16]
    MICHALEWICZ Z, SCHOENAUER M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation, 1996, 4(1): 1-32 doi: 10.1162/evco.1996.4.1.1
    [17]
    CÁMARA M, ORTEGA J, DE TORO F. A single front genetic algorithm for parallel multi-objective optimization in dynamic environments[J]. Neurocomputing, 2009, 72(16/17/18): 3570-3579
    [18]
    MUKHOPADHYAY A, MAULIK U, BANDYOPADHYAY S. Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 991-1005 doi: 10.1109/TEVC.2009.2012163
    [19]
    BARBULESCU L, WATSON J P, WHITLEY L D, et al. Scheduling space-ground communications for the air force satellite control network[J]. Journal of Scheduling, 2004, 7(1): 7-34 doi: 10.1023/B:JOSH.0000013053.32600.3c
    [20]
    KIM K, JEONG I J. Flow shop scheduling with no-wait flexible lot streaming using an adaptive genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2009, 44(11/12): 1181-1190
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article Views(179) PDF Downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return