Citation: | LIU Bing, ZHOU Hai, BIAN Chunjiang, CHENG Xiaolei, WANG Pengfei, ZHANG Biao. Lightweight Yolov5 Algorithm Target Detection System Based on Space-grade NPU (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-11 doi: 10.11728/cjss2025.04.2024-0103 |
[1] |
于双铭, 武文波, 窦润江, 等. 基于视觉处理器芯片的遥感图像智能处理系统设计与验证[J]. 航天返回与遥感, 2023, 44(5): 54-64 doi: 10.3969/j.issn.1009-8518.2023.05.007
YU Shuangming, WU Wenbo, DOU Runjiang, et al. Design and implementation of remote sensing image processing system with intelligent vision processor[J]. Spacecraft Recovery :Times New Roman;">& Remote Sensing, 2023, 44(5): 54-64 doi: 10.3969/j.issn.1009-8518.2023.05.007
|
[2] |
杜鑫, 钟若飞, 李清扬, 等. 遥感图像星上智能处理地面仿真模拟系统设计与实现[J]. 遥感技术与应用, 2022, 37(5): 1198-1208
DU Xin, ZHONG Ruofei, LI Qingyang, et al. Design and implementation of ground simulation system for remote sensing image on-board intelligent processing[J]. Remote Sensing Technology and Application, 2022, 37(5): 1198-1208
|
[3] |
许思源, 吴伟林. 多尺度特征融合的遥感图像目标检测算法研究[J/OL]. 计算机工程与应用, 1-10[2024-07-24]. http://kns.cnki.net/kcms/detail/11.2127.TP.20240625.1708.023.html.
XU Siyuan, WU Weilin. Research on target detection algorithm based on multi-scale feature fusion in remote sensing images[J/OL]. Computer Engineering and Applications, 1-10[2024-07-24]
|
[4] |
BHAGYA C, SHYNA A. An overview of deep learning based object detection techniques[C]//2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). Chennai: IEEE, 2019: 1-6. DOI: 10.1109/ICIICT1.2019.8741359
|
[5] |
M R, L A R. Comprehensive investigation on real—time object detection in deep learning[C]//2023 IEEE Fifth International Conference on Advances in Electronics, Computers and Communications (ICAECC). Bengaluru: IEEE, 2023: 1-5. DOI: 10.1109/ICAECC59324.2023.10560332
|
[6] |
KUMAR A S S, MAHESH K. An investigation of deep neural network based techniques for object detection and recognition task in computer vision[C]//2023 2nd International Conference on Edge Computing and Applications (ICECAA). Namakkal: IEEE, 2023: 385-390. DOI: 10.1109/ICECAA58104.2023.10212307
|
[7] |
KUMAR D, Zhang X L. Improving more instance segmentation and better object detection in remote sensing imagery based on cascade mask R-CNN[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 4672-4675. DOI: 10.1109/IGARSS47720.2021.9554512
|
[8] |
LE H, NGUYEN T, LE V, et al. Guided anchoring cascade R-CNN: an intensive improvement of R-CNN in Vietnamese document detection[C]//2021 8th NAFOSTED Conference on Information and Computer Science (NICS). Hanoi: IEEE, 2021: 188-193. DOI: 10.1109/NICS54270.2021.9701510
|
[9] |
ZHANG J L, CHEN S X, HOU Y W. Accurate Object detection with relation module on improved R-FCN[C]//2020 Chinese Automation Congress (CAC). Shanghai: IEEE, 2020: 7131-7135. DOI: 10.1109/CAC51589.2020.9326543
|
[10] |
PULIPALUPULA M, PATLOLA S, NAYAKI M, et al. Object detection using You Only Look Once (YOLO) algorithm in Convolution Neural Network (CNN)[C]//2023 IEEE 8th International Conference for Convergence in Technology (I2CT). Lonavla: IEEE, 2023: 1-4. DOI: 10.1109/I2CT57861.2023.10126213
|
[11] |
LU Y H, ZHANG L W, XIE W. YOLO-compact: an efficient YOLO network for single category real-time object detection[C]//2020 Chinese Control and Decision Conference (CCDC). Hefei: IEEE, 2020: 1931-1936. DOI: 10.1109/CCDC49329.2020.9164580
|
[12] |
邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708 doi: 10.11999/JEIT210790
SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics :Times New Roman;">& Information Technology, 2022, 44(10): 3697-3708 doi: 10.11999/JEIT210790
|
[13] |
胡焱, 原子昊, 涂晓光, 等. 基于对比学习的改进SSD目标检测算法[J]. 红外技术, 2024, 46(5): 548-555
HU Yan, YUAN Zihao, TU Xiaoguang, et al. Improved SSD object detection algorithm based on contrastive learning[J]. Infrared Technology, 2024, 46(5): 548-555
|
[14] |
ZHU D R, DAI L F, DU P R. CCE-YOLOv5s: an improved YOLOv5 model for UAV small target detection[C]//2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT). Dali: IEEE, 2023: 824-829. DOI: 10.1109/ICCASIT58768.2023.10351744
|
[15] |
BISWAS S, NANDY A, NASKAR A K, et al. Real time gesture recognition using improved YOLOv5 model[C]//2024 11th International Conference on Signal Processing and Integrated Networks (SPIN). Noida: IEEE, 2024: 328-333. DOI: 10.1109/SPIN60856.2024.10511787
|
[16] |
CHEN S B, LIN W. Embedded system real-time vehicle detection based on improved YOLO network[C]//2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Chongqing: IEEE, 2019: 1400-1403. DOI: 10.1109/IMCEC46724.2019.8984055
|
[17] |
BOLTOV Y, SKARGA-BANDUROVA I, DERKACH M. A comparative analysis of deep learning-based object detectors for embedded systems[C]//2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). Dortmund: IEEE, 2023: 1156-1160. DOI: 10.1109/IDAACS58523.2023.10348642
|
[18] |
AI AMIN R, HASAN M, WIESE V, et al. FPGA-based real-time object detection and classification system using YOLO for edge computing[J]. IEEE Access, 2024, 12: 73268-73278. doi: 10.1109/ACCESS.2024.3404623
|
[19] |
KAYMAKCI Z E, AKARSU M, ÖZTÜRK C N. Multiple small-scale object detection in aerial vehicle images using standard or optimized YOLO detectors[C]//2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA). Hammamet: IEEE, 2023: 1-5. DOI: 10.1109/INISTA59065.2023.10310562
|
[20] |
薛珊, 安宏宇, 吕琼莹, 等. 复杂背景下基于YOLOv7-tiny的图像目标检测算法[J]. 红外与激光工程, 2024, 53(01): 269-280
XUE Shan, AN Hongyu, LV Qiongying et al. Image object detection algorithm based on YOLOv7-tiny in complex background[J]. Infrared and laser engineering, 2024, 53(01): 269-280
|
[21] |
Wagstaff K , Shu H , Castano R . How to Leverage Existing Spectral Knowledge when Clustering Hyperspectral Data[J]. AGU Fall Meeting Abstracts, 2004.
|
[22] |
XU P, LI Q Y, ZHANG B, et al. On-board real-time ship detection in hisea-1 SAR images based on CFAR and lightweight deep learning[J]. Remote Sensing, 2021, 13(10): 1995. doi: 10.3390/rs13101995
|
[23] |
ZHOU F B, ZHAO H L, NIE Z. Safety helmet detection based on YOLOv5[C]//2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). Shenyang: IEEE, 2021: 6-11. DOI: 10.1109/ICPECA51329.2021.9362711
|
[24] |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 1577-1586. DOI: 10.1109/CVPR42600.2020.00165
|
[25] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 3-19
|
[26] |
翁逍然. 面向边缘端NPU平台的深度神经网络端到端部署系统[D]. 成都: 电子科技大学, 2023
WENG Xiaoran. A Deep Neural Network End-To-End Deployment System for Edge NPU Platforms[D]. Chengdu: University of Electronic Science and Technology of China, 2023
|
[27] |
张利红, 蔡敬菊. 基于轻量化Yolov5算法的目标检测系统[J]. 计算机技术与发展, 2022, 32(11): 134-139 doi: 10.3969/j.issn.1673-629X.2022.11.020
ZHANG Lihong, CAI Jingju. Target detection system based on lightweight Yolov5 algorithm[J]. Computer Technology and Development, 2022, 32(11): 134-139 doi: 10.3969/j.issn.1673-629X.2022.11.020
|
[28] |
吴淼. 酒店卫勤人员规范穿戴检测网络轻量化设计与RK3399pro平台实现[D]. 杭州: 浙江大学, 2023
WU Miao. Lightweight Design of Wearing Detection Algorithm for Hotel Cleaning Staff and Implementation of RK3399pro Platform[D]. Hangzhou: Zhejiang University, 2023
|