Citation: | LIU Heshan, WANG Juan, GAO Ruihong, QI Keqi, WANG Shaoxin, LI Pan, GAO Xuerong, LUO Ziren. Noise and Index Decomposition of Taiji-2 Interferometer System (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-11 doi: 10.11728/cjss2025.04.2025-yg02 |
[1] |
LUO Z R, WANG Y, WU Y L, et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108 doi: 10.1093/ptep/ptaa083
|
[2] |
吴岳良, 胡文瑞, 王建宇, 等. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
WU Yueliang, HU Wenrui, WANG Jianyu, et al. Review and scientific objectives of spaceborne gravitational wave detection missions[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
|
[3] |
GONG Y G, LUO J, WANG B. Concepts and status of Chinese space gravitational wave detection projects[J]. Nature Astronomy, 2021, 5(9): 881-889 doi: 10.1038/s41550-021-01480-3
|
[4] |
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010 doi: 10.1088/0264-9381/33/3/035010
|
[5] |
The Taiji Scientific Collaboration. China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. Communications Physics, 2021, 4(1): 34 doi: 10.1038/s42005-021-00529-z
|
[6] |
LIU H S, LUO Z R, SHA W, et al. In-orbit performance of the laser interferometer of Taiji-1 experimental satellite[J]. International Journal of Modern Physics A, 2021, 36(11n12): 2140004 doi: 10.1142/S0217751X21400042
|
[7] |
The Taiji Scientific Collaboration. The pilot of Taiji program — from the ground to Taiji-2[J]. International Journal of Modern Physics A, 2021, 36(11n12): 2012001
|
[8] |
LUO Z R, ZHANG M, WANG J Y, et al. Progress of Taiji-2 Project[J]. Chinese Journal of Space Science, 2024, 44(4): 674-676 doi: 10.11728/cjss2024.04.2024-yg14
|
[9] |
王娟, 齐克奇, 王少鑫, 等. 面向空间引力波探测的激光干涉技术研究进展及展望[J]. 中国科学: 物理学 力学 天文学, 2024, 54(7): 270405
WANG Juan, QI Keqi, WANG Shaoxin, et al. Advance and prospect in the study of laser interferometrytechnology for space gravitational wave detection[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(7): 270405
|
[10] |
高瑞弘, 刘河山, 罗子人, 等. 太极计划激光指向调控方案介绍[J]. 中国光学, 2019, 12(3): 425-431 doi: 10.3788/co.20191203.0425
GAO Ruihong, LIU Heshan, LUO Ziren, et al. Introduction of laser pointing scheme in the Taiji program[J]. Chinese Optics, 2019, 12(3): 425-431 doi: 10.3788/co.20191203.0425
|
[11] |
刘河山, 高瑞弘, 罗子人, 等. 空间引力波探测中的绝对距离测量及通信技术[J]. 中国光学, 2019, 12(3): 486-492 doi: 10.3788/co.20191203.0486
LIU Heshan, GAO Ruihong, LUO Ziren, et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486-492 doi: 10.3788/co.20191203.0486
|
[12] |
CHEN P Q, ZHANG Y B, DENG R J, et al. Experimental demonstration of bi-directional laser ranging and data communication for space gravitational wave detection[J]. Results in Physics, 2024, 65: 107985 doi: 10.1016/j.rinp.2024.107985
|
[13] |
江强, 董鹏, 刘河山, 等. 太极计划时钟噪声传递的地面原理验证[J]. 中国光学(中英文), 2023, 16(6): 1394-1403 doi: 10.37188/CO.2023-0012
JIANG Qiang, DONG Peng, LIU Heshan, et al. Ground-based principle verification of clock noisetransfer for the Taiji program[J]. Chinese Optics, 2023, 16(6): 1394-1403 doi: 10.37188/CO.2023-0012
|
[14] |
王晨, 高雪荣, 齐克奇, 等. 太极计划的弱光锁相地面实验验证及噪声分析[J]. 中国激光, 2025, 52(11): 1101004 doi: 10.3788/CJL241485
WANG Chen, GAO Xuerong, QI Keqi, et al. Weak light phase-locked ground-based experimantal validation and noise analysis of the Taiji projecet[J]. Chinese Journal of Lasers, 2025, 52(11): 1101004 doi: 10.3788/CJL241485
|
[15] |
BARKE S. Inter-Spacecraft Frequency Distribution for Future Gravitational Wave Observatories[D]. Hannover: Leibniz Universität Hannover, 2015
|
[16] |
ZHAN Z H, LUO Y X, YEH H C, et al. Development of a space-compatible packaging system for an integrated monolithic ultra-stable optical reference[J]. Review of Scientific Instruments, 2024, 95(10): 104505 doi: 10.1063/5.0224636
|
[17] |
刘宇, 张玉珠, 彭晓东, 等. 激光频率波动对空间引力波探测激光干涉测量的影响分析[J]. 空间科学学报, 2025, 45(1): 179-188 doi: 10.11728/cjss2025.01.2024-0020
LIU Yu, ZHANG Yuzhu, PENG Xiaodong, et al. Analysis of the influence and importance of laser frequency fluctuation on laser interference simulation system for space gravitational wave detection[J]. Chinese Journal of Space Science, 2025, 45(1): 179-188 doi: 10.11728/cjss2025.01.2024-0020
|
[18] |
ZHANG J F, YANG Z, MA X S, et al. Inter-spacecraft offset frequency setting strategy in the Taiji program[J]. Applied Optics, 2022, 61(3): 837-843 doi: 10.1364/AO.442583
|
[19] |
ZHANG J F, MA X S, ZHAO M Y, et al. Advanced inter-spacecraft offset frequency setting strategy for the Taiji program based on a two-stage optimization algorithm[J]. Applied Optics, 2023, 62(16): 4370-4380 doi: 10.1364/AO.487809
|
[20] |
FAN X, FAYER S E, MYERS T G, et al. Switchable damping for a one-particle oscillator[J]. Review of Scientific Instruments, 2021, 92(2): 023201 doi: 10.1063/5.0038005
|
[21] |
HUARCAYA V, ÁLVAREZ M D, PENKERT D, et al. 2×10–13 Fractional laser-frequency stability with a 7-cm unequal-arm mach-zehnder interferometer[J]. Physical Review Applied, 2023, 20(2): 024078 doi: 10.1103/PhysRevApplied.20.024078
|
[22] |
GHOSH S, SANJUAN J, MUELLER G. Arm locking performance with the new LISA design[J]. Classical and Quantum Gravity, 2022, 39(11): 115009 doi: 10.1088/1361-6382/ac69a4
|
[23] |
YAMAMOTO K, BYKOV I, REINHARDT J N, et al. Experimental end-to-end demonstration of intersatellite absolute ranging for the Laser Interferometer Space Antenna[J]. Physical Review Applied, 2024, 22(5): 054020 doi: 10.1103/PhysRevApplied.22.054020
|
[24] |
WISSEL L, WITTCHEN A, SCHWARZE T S, et al. Relative-intensity-noise coupling in heterodyne interferometers[J]. Physical Review Applied, 2022, 17(2): 024025 doi: 10.1103/PhysRevApplied.17.024025
|
[25] |
WISSEL L, HARTWIG O, BAYLE J B, et al. Influence of laser relative-intensity noise on the laser interferometer space antenna[J]. Physical Review Applied, 2023, 20(1): 014016 doi: 10.1103/PhysRevApplied.20.014016
|
[26] |
WISSEL L, HEWITSON M, HEINZEL G. Measuring the impact of laser relative intensity noise on heterodyne interferometers using differential wavefront sensing[J]. Physical Review Applied, 2024, 22(4): 044048 doi: 10.1103/PhysRevApplied.22.044048
|
[27] |
LUO Z R, GUO Z K, JIN G, et al. A brief analysis to Taiji: science and technology[J]. Results in Physics, 2020, 16: 102918 doi: 10.1016/j.rinp.2019.102918
|
[28] |
REID M M, HAUGHIAN K, CUMMING A V, et al. Temperature dependence of the thermal conductivity of hydroxide catalysis bonds between silicon substrates[J]. Classical and Quantum Gravity, 2023, 40(24): 245006 doi: 10.1088/1361-6382/ad0923
|
[29] |
LOHDE A, VOIGT D, GERBERDING O. Dual balanced readout for scattered light noise mitigation in Michelson interferometers[J]. Physical Review D, 2025, 111(2): 022004 doi: 10.1103/PhysRevD.111.022004
|
[30] |
ROHR M J, AST S, GERBERDING O, et al. Fiber backscatter under increasing exposure to ionizing radiation[J]. Optics Express, 2020, 28(23): 34894-34903 doi: 10.1364/OE.404139
|
[31] |
言立慧, 刘河山, 边星, 等. 太极计划中的测温电桥激励源设计与验证[J]. 空间科学学报, 2025, 45(3): 1-10
YAN Lihui, LIU Heshan, BIAN Xing, et al. Design and verification of temperature measurement bridge excitation source in the Taiji Program[J]. Chinese Journal of Space Science, 2025, 45(3): 1-10
|
[32] |
ROBERTSON D I, FITZSIMONS E D, KILLOW C J, et al. Automated precision alignment of optical components for hydroxide catalysis bonding[J]. Optics Express, 2018, 26(22): 28323-28334 doi: 10.1364/OE.26.028323
|
[33] |
MANGANO V, VAN VEGGEL A A, DOUGLAS R, et al. Determination of the refractive index and thickness of a hydroxide-catalysis bond between fused silica from reflectivity measurements[J]. Optics Express, 2017, 25(4): 3196-3213 doi: 10.1364/OE.25.003196
|
[34] |
SCHUSTER S, TRÖBS M, WANNER G, et al. Experimental demonstration of reduced tilt-to-length coupling by a two-lens imaging system[J]. Optics Express, 2016, 24(10): 10466-10475 doi: 10.1364/OE.24.010466
|
[35] |
ARMANO M, AUDLEY H, BAIRD J, et al. Tilt-to-length coupling in LISA Pathfinder: a data analysis[J]. Physical Review D, 2023, 108(10): 102003 doi: 10.1103/PhysRevD.108.102003
|
[36] |
SALLUSTI M, GATH P, WEISE D, et al. LISA system design highlights[J]. Classical and Quantum Gravity, 2009, 26(9): 094015 doi: 10.1088/0264-9381/26/9/094015
|
[37] |
梁浴榕. 外差激光干涉仪中的高精度相位测量研究[D]. 武汉: 华中科技大学, 2013
LIANG Yurong. Hign Precision Phase Measurement for Heterofyne Laser Interferomter[D]. Wuhan: Huazhong University of Science and Technology, 2013
|
[38] |
YANG R, LIU H S, LUO Z R. Optimization design of decimation filter for the phasemeter in the space gravitational wave detection[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 7006508
|
[39] |
李卓, 郑建华, 李明涛, 等. 太阳系天体引力对空间引力波探测日心编队构型的影响分析[J]. 空间科学学报, 2021, 41(3): 457-466 doi: 10.11728/cjss2021.03.457
LI Zhuo, ZHENG Jianhua, LI Mingtao, et al. Analysis of celestial gravity influence on heliocentric formation flying of gravitational wave observatory[J]. Chinese Journal of Space Science, 2021, 41(3): 457-466 doi: 10.11728/cjss2021.03.457
|
[40] |
许茗洋, 谈玉杰, 邵成刚. 空间引力波探测中的时钟噪声抑制技术研究进展[J]. 中国科学: 物理学 力学 天文学, 2025, 55(3): 230409
XU Mingyang, TAN Yujie, SHAO Chenggang. Research progress on clock noise suppression technique for space-borne gravitational wave detection[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2025, 55(3): 230409
|
[41] |
SANZ I E, HESKE A, LIVAS J C. A telescope for LISA – the Laser Interferometer Space Antenna[J]. Advanced Optical Technologies, 2018, 7(6): 395-400 doi: 10.1515/aot-2018-0044
|
[42] |
SASSO C P, MANA G, MOTTINI S. Telescope jitters and phase noise in the LISA interferometer[J]. Optics Express, 2019, 27(12): 16855-16870 doi: 10.1364/OE.27.016855
|
[43] |
JERSEY K, ZHANG Y Q, HARLEY-TROCHIMCZYK I, et al. Design, fabrication, and testing of an optical truss interferometer for the LISA telescope[C]//Design, Manufacture, and Test of Space and Ground Systems III. San Diego: SPIE, 2021
|
[44] |
BENDER P L. Wavefront distortion and beam pointing for LISA[J]. Classical and Quantum Gravity, 2005, 22(10): S339-S346 doi: 10.1088/0264-9381/22/10/027
|
[45] |
DANZMANN K. LISA Pre-Phase A Report[R], LISA Project internal report number MPQ 233, 1998
|
[46] |
TRÖBS M, 'ARCIO L D, BARKE S, et al. Testing the LISA optical bench[C]//Proceedings of the International Conference on Space Optics. Ajaccio, Corsica, France, 2012
|
[47] |
NOFRARIAS M, MARÍN A F G, LOBO A, et al. Thermal diagnostic of the optical window on board LISA Pathfinder[J]. Classical and Quantum Gravity, 2007, 24(20): 5103-5121 doi: 10.1088/0264-9381/24/20/012
|
[48] |
PACZKOWSKI S, GIUSTERI R, HEWITSON M, et al. Postprocessing subtraction of tilt-to-length noise in LISA[J]. Physical Review D, 2022, 106(4): 042005 doi: 10.1103/PhysRevD.106.042005
|