Turn off MathJax
Article Contents
GUO Hongyang, ZHANG Tao, HAN Peng, CHEN Chen, ZHAO Zhihua. Error Prediction Method of Geomagnetic Model Based on Extreme Learning Machine (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-10 doi: 10.11728/cjss2025.05.2024-0109
Citation: GUO Hongyang, ZHANG Tao, HAN Peng, CHEN Chen, ZHAO Zhihua. Error Prediction Method of Geomagnetic Model Based on Extreme Learning Machine (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-10 doi: 10.11728/cjss2025.05.2024-0109

Error Prediction Method of Geomagnetic Model Based on Extreme Learning Machine

doi: 10.11728/cjss2025.05.2024-0109 cstr: 32142.14.cjss.2024-0109
  • Received Date: 2024-08-30
  • Rev Recd Date: 2025-05-07
  • Available Online: 2025-05-09
  • The high-precision geomagnetic field model is an important foundation for autonomous navigation of near earth satellites, but the improvement of navigation accuracy is constrained by observation errors, spherical harmonic truncation errors, and slow updates of the geomagnetic model. To solve this problem, this paper proposes a geomagnetic model error prediction method based on regularized extreme learning machine. The optimal estimation of the regularization coefficient C is achieved by using a subtraction mean algorithm, which reduces subjectivity and randomness in parameter tuning, improves learning efficiency and prediction accuracy. In addition, this method can effectively improve the error estimation accuracy when outliers exist in geomagnetic observation sequences. Then, a geomagnetic navigation method with model error compensation was proposed by integrating it with filtering algorithms, and simulation verification was conducted using real geomagnetic measurement data from in orbit satellites. The results show that the prediction accuracy of the method proposed in this paper is superior to several commonly used neural network prediction methods, and the navigation accuracy reaches 1.49km, indicating that the proposed error prediction model can effectively improve the performance of geomagnetic navigation.

     

  • loading
  • [1]
    CHEN G F, YU F, ZONG H, et al. Geomagnetic orbit determination using fuzzy regulating unscented Kalman filter[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(4): 695-703
    [2]
    KIANI M, POURTAKDOUST S H. Adaptive square-root cubature–quadrature Kalman particle filter via KLD-sampling for orbit determination[J]. Aerospace Science and Technology, 2015, 46: 159-167 doi: 10.1016/j.ast.2015.07.008
    [3]
    LI X, SONG B Q, WANG Y J, et al. Calibration and alignment of tri-axial magnetometers for attitude determination[J]. IEEE Sensors Journal, 2018, 18(18): 7399-7406 doi: 10.1109/JSEN.2018.2859832
    [4]
    向奉卓, 李广云, 王力, 等. 基于递推最小二乘的三轴磁强计在线自校正方法[J]. 传感器与微系统, 2019, 38(2): 30-33

    XIANG Fengzhuo, LI Guangyun, WANG Li, et al. Three-axis magnetometer online self-calibration method based on recursive least square[J]. Transducer and Microsystems Technologies, 2019, 38(2): 30-33
    [5]
    BAI W Q, ZHANG X H, ZHANG S L, et al. Long-distance geomagnetic navigation in GNSS-denied environments with deep reinforcement learning[OL]. arXiv preprint arXiv: 2410.15837, 2024
    [6]
    CHEN Z, LIU K J, ZHANG Q, et al. Geomagnetic vector pattern recognition navigation method based on probabilistic neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5909608
    [7]
    WINTOFT P, WIK M. Exploring three recurrent neural network architectures for geomagnetic predictions[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 664483 doi: 10.3389/fspas.2021.664483
    [8]
    何欣燃, 钟秋珍, 崔延美, 等. 基于长短期记忆神经网络的太阳耀斑短期预报[J]. 空间科学学报, 2022, 42(5): 862-872 doi: 10.11728/cjss2022.05.210315028

    HE Xinran, ZHONG Qiuzhen, CUI Yanmei, et al. Solar flare short-term forecast model based on long and short-term memory neural network[J]. Chinese Journal of Space Science, 2022, 42(5): 862-872 doi: 10.11728/cjss2022.05.210315028
    [9]
    SICILIANO F, CONSOLINI G, TOZZI R, et al. Forecasting SYM‐H index: a comparison between long short‐term memory and convolutional neural networks[J]. Space Weather, 2020, 19(2): e2020SW002589
    [10]
    TASISTRO-HART A, GRAYVER A, KUVSHINOV A. Probabilistic geomagnetic storm forecasting via deep learning[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028228 doi: 10.1029/2020JA028228
    [11]
    杨茂, 张书天, 王勃. 基于因果正则化极限学习机的风电功率短期预测方法[J]. 电力系统保护与控制, 2024, 52(11): 127-136

    YANG Mao, ZHANG Shutian, WANG Bo. Short-term wind power forecasting method based on a causal regularized extreme learning machine[J]. Power System Protection and Control, 2024, 52(11): 127-136
    [12]
    WANG H, XU L W, TAO Y, et al. OP performance prediction for complex mobile multiuser networks based on extreme learning machine[J]. IEEE Access, 2020, 8: 14557-14564 doi: 10.1109/ACCESS.2020.2966690
    [13]
    TROJOVSKY P, MOHAMMAD D. Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems[J]. Biomimetics, 2023, 8(2): 149 doi: 10.3390/biomimetics8020149
    [14]
    ALKEN P, THÉBAULT E, BEGGAN C D, et al. International geomagnetic reference field: the thirteenth generation[J]. Earth, Planets and Space, 2021, 73: 49 doi: 10.1186/s40623-020-01288-x
    [15]
    张涛, 张文博, 高东, 等. 一种神经网络预测模型误差的地磁导航方法[J]. 航天控制, 2024, 42(1): 37-42 doi: 10.3969/j.issn.1006-3242.2024.01.006

    ZHANG Tao, ZHANG Wenbo, GAO Dong, et al. A geomagnetic navigation method based on neural network prediction model error[J]. Aerospace Control, 2024, 42(1): 37-42 doi: 10.3969/j.issn.1006-3242.2024.01.006
    [16]
    WINCH D E, IVERS D J, TURNER J P R, et al. Geomagnetism and Schmidt quasi-normalization[J]. Geophysical Journal International, 2005, 160(2): 487-504 doi: 10.1111/j.1365-246X.2004.02472.x
    [17]
    高东, 朱明慧, 韩鹏. 一种地磁/惯性深度融合导航方法[J]. 中国惯性技术学报, 2022, 30(4): 437-444

    GAO Dong, ZHU Minghui, HAN Peng. A geomagnetic/inertial depth fusion navigation method[J]. Journal of Chinese Inertial Technology, 2022, 30(4): 437-444
    [18]
    JIAO M, WANG D Q, YANG Y, et al. More intelligent and robust estimation of battery state-of-charge with an improved regularized extreme learning machine[J]. Engineering Applications of Artificial Intelligence, 2021, 104: 104407 doi: 10.1016/j.engappai.2021.104407
    [19]
    卢兆兴, 吕志峰, 李婷, 等. 基于BP神经网络的地磁变化场预测研究[J]. 大地测量与地球动力学, 2021, 41(3): 229-233

    LU Zhaoxing, LÜ Zhifeng, LI Ting, et al. Forecasting of the variable geomagnetic field based on BP neural network[J]. Journal of Geodesy and Geodynamics, 2021, 41(3): 229-233
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article Views(104) PDF Downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return