Turn off MathJax
Article Contents
HUANG Can, LI Junyu, LIU Lilong, HUANG Liangke, WEI Lüquan. Application of Improved Model Based on LSTM in Ionospheric TEC Forecast (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-9 doi: 10.11728/cjss2025.05.2024-0112
Citation: HUANG Can, LI Junyu, LIU Lilong, HUANG Liangke, WEI Lüquan. Application of Improved Model Based on LSTM in Ionospheric TEC Forecast (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-9 doi: 10.11728/cjss2025.05.2024-0112

Application of Improved Model Based on LSTM in Ionospheric TEC Forecast

doi: 10.11728/cjss2025.05.2024-0112 cstr: 32142.14.cjss.2024-0112
  • Available Online: 2025-01-10
  • Ionospheric delay is one of the most important sources of error in global satellite navigation and positioning. Improving the prediction accuracy of ionospheric Total Electron Content (TEC) is very important to improve the positioning accuracy of satellite navigation. In this paper, we combine sliding window and Long Short-Term Memory (LSTM) neural network, and use sliding window algorithm to continuously update the input time series data set. We tested the accuracy of the models corresponding to different input sequence lengths and recorded them, and found that the accuracy of the last 10% of the input data series was the best when the predicted value was updated. Finally, we used the sliding window method to update the last 10% of the input data series with the predicted value to build the TEC prediction model. The newly constructed model, traditional LSTM model and BP model are used to predict the same TEC time series data, and Root Mean Square Error (RMSE), absolute residual error and mean absolute error (MAE) are used to evaluate the accuracy of the model prediction results, and verify the prediction performance of the new model. The experimental results show that the proportion of residual absolute value less than 5 TECU predicted by the newly constructed model in both the calm period and the magnetic storm period exceeds 85%, and the proportion of predicted residual absolute value less than 5 TECU corresponding to the traditional LSTM model increases by 49% and 71%. On the other hand, compared with the traditional LSTM model, the root-mean-square error of the new model is reduced by 31% and 35% respectively, and the average absolute error is reduced by 25% and 32% respectively. In addition, we can also see that the RMSE mean values and MAE mean values of SLSTM model are smaller than those of traditional LSTM model and BP model.

     

  • loading
  • [1]
    YAO Y B, LIU L, KONG J, et al. Global ionospheric modeling based on multi-GNSS, satellite altimetry, and Formosat-3/COSMIC data[J]. GPS Solutions, 2018, 22(4): 104 doi: 10.1007/s10291-018-0770-6
    [2]
    袁运斌, 李敏, 霍星亮, 等. 北斗三号全球导航卫星系统全球广播电离层延迟修正模型(BDGIM)应用性能评估[J]. 测绘学报, 2021, 50(4): 436-447

    YUAN Yunbin, LI Min, HUO Xingliang, et al. Research on performance of BeiDou global broadcast ionospheric delay correction model (BDGIM) of BDS-3[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 436-447
    [3]
    朱威, 任晓东, 张小红. 不同纬度和站间距的电离层单星模型对PPP-RTK增强定位效果分析[J/OL]. 武汉大学学报(信息科学版), 1-13[2024-06-22]. https://doi.org/10.13203/j.whugis20230476

    ZHU Wei, REN Xiaodong, ZHANG Xiaohong. Performance of PPP-RTK enhanced by slant ionospheric model based on reference stations with different latitudes and distances[J/OL]. Geomatics and Information Science of Wuhan University, (2024-06-22). https://doi.org/10.13203/j.whugis20230476
    [4]
    程胡华, 詹彩菊, 赵亮, 等. IRI2016参考电离层模型在高度60~100km的精度分析[J]. 测绘学报, 2020, 49(1): 42-54

    CHENG Huhua, ZHAN Caiju, ZHAO Liang, et al. Accuracy analysis of IRI2016 international reference ionosphere at altitude of 60~100 km[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 42-54
    [5]
    QIAO J D, LIU Y, FAN Z Q, et al. Ionospheric TEC data assimilation based on Gauss–Markov Kalman filter[J]. Advances in Space Research, 2021, 68(10): 4189-4204 doi: 10.1016/j.asr.2021.08.004
    [6]
    陈雨田, 刘立龙, 刘中流, 等. 纬度因素对季节性时序TEC短期预报模型的影响分析[J]. 大地测量与地球动力学, 2018, 38(6): 581-586

    CHEN Yutian, LIU Lilong, LIU Zhongliu, et al. Analysis of the influence of latitude factors on seasonal time series TEC short-term forecast model[J]. Journal of Geodesy and Geodynamics, 2018, 38(6): 581-586
    [7]
    尹萍, 闫晓鹏, 宁泽浩. 一种基于LSTM与IRI模型的电离层层析TEC组合预测方法[J]. 电波科学学报, 2022, 37(5): 852-861

    YIN Ping, YAN Xiaopeng, NING Zehao. A combined forecasting method of ionospheric tomography TEC based on LSTM and IRI model[J]. Chinese Journal of Radio Science, 2022, 37(5): 852-861
    [8]
    张富彬, 周晨, 王成, 等. 基于深度学习的全球电离层TEC预测[J]. 电波科学学报, 2021, 36(4): 553-561

    ZHANG Fubin, ZHOU Chen, WANG Cheng, et al. Global ionospheric TEC prediction based on deep learning[J]. Chinese Journal of Radio Science, 2021, 36(4): 553-561
    [9]
    TANG R X, ZENG F T, CHEN Z, et al. The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq[J]. Atmosphere, 2020, 11(4): 316 doi: 10.3390/atmos11040316
    [10]
    唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042

    TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
    [11]
    XIE T, DAI Z Q, ZHU X W, et al. LSTM-based short-term ionospheric TEC forecast model and positioning accuracy analysis[J]. GPS Solutions, 2023, 27(2): 66 doi: 10.1007/s10291-023-01406-8
    [12]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [13]
    刘伟峰, 黄江, 邓柏昌, 等. 基于GPS的广州地区电离层不规则体纬向漂移速度计算分析[J]. 空间科学学报, 2012, 32(1): 48-54 doi: 10.11728/cjss2012.01.048

    LIU Weifeng, HUANG Jiang, DENG Baichang, et al. Calculation analysis of ionospheric irregularity zonal drift velocity in Guangzhou based on GPS measurements[J]. Chinese Journal of Space Science, 2012, 32(1): 48-54 doi: 10.11728/cjss2012.01.048
    [14]
    KAREVAN Z, SUYKENS J A K. Transductive LSTM for time-series prediction: an application to weather forecasting[J]. Neural Networks, 2020, 125: 1-9 doi: 10.1016/j.neunet.2019.12.030
    [15]
    郝祎琛, 谢心喻, 丁家琦, 等. 瞬态多相流场图神经网络时空预测方法研究[J]. 哈尔滨工程大学学报, 2024, 45(9): 1761-1769

    HAO Yichen, XIE Xinyu, DING Jiaqi, et al. Spatiotemporal prediction method for the transient multiphase flow field via graph neural network[J]. Journal of Harbin Engineering University, 2024, 45(9): 1761-1769
    [16]
    赵鑫垚. 北斗/加速度计融合动态分析与预警[D]. 北京: 北京建筑大学, 2023

    ZHAO Xinyao. Beidou/Accelerometer fusion dynamic analysis and early warning[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2023
    [17]
    谢婷, 陈必焰, 匡翠林. 结合PCA和滑动时窗的电离层异常探测方法研究[J]. 大地测量与地球动力学, 2021, 41(10): 1085-1094

    XIE Ting, CHEN Biyan, KUANG Cuilin. Study of ionospheric anomaly detection method combining PCA and sliding time window[J]. Journal of Geodesy and Geodynamics, 2021, 41(10): 1085-1094
    [18]
    唐旺, 马尚昌, 李程. 基于滑动窗口的LSTM地温预测方法[J]. 成都理工大学学报(自然科学版), 2021, 48(3): 377-384

    TANG Wang, MA Shangchang, LI Cheng. LSTM ground temperature prediction method based on sliding window[J]. Journal of Chengdu University of Technology (Science :Times New Roman;">& Technology Edition), 2021, 48(3): 377-384
    [19]
    ZHANG X H, REN X D, WU F B, et al. Short-term prediction of ionospheric TEC based on ARIMA model[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 9-16
    [20]
    刘立龙, 陈雨田, 黎峻宇, 等. 活跃期区域电离层总电子短期预报及适用性分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1757-1764

    LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764
    [21]
    DUNCAN R A. The equatorial F-region of the ionosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1960, 18(2/3): 89-100
    [22]
    GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm?[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 5771-5792 doi: 10.1029/93JA02867
    [23]
    REN X D, YANG P X, MEI D K, et al. Global ionospheric TEC forecasting for geomagnetic storm time using a deep learning-based multi-model ensemble method[J]. Space Weather, 2023, 21(3): e2022SW003231 doi: 10.1029/2022SW003231
    [24]
    MUHAMMAD A, KÜLAHCI F. A semi-supervised total electron content anomaly detection method using LSTM-auto-encoder[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 241: 105979 doi: 10.1016/j.jastp.2022.105979
    [25]
    SHI S S, ZHANG K F, SHI J Q, et al. Modeling TEC maps over China using particle swarm optimization neural networks and long-term ground-based GPS, COSMIC, and Fengyun data[J]. Space Weather, 2023, 21(4): e2022SW003357 doi: 10.1029/2022SW003357
    [26]
    ZHANG L, WANG F L, SUN T, et al. A constrained optimization method based on BP neural network[J]. Neural Computing and Applications, 2018, 29(2): 413-421 doi: 10.1007/s00521-016-2455-9
    [27]
    熊波, 李肖霖, 王宇晴, 等. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报, 2022, 65(7): 2365-2377

    XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal Geophysics, 2022, 65(7): 2365-2377
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article Views(328) PDF Downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return