Citation: | HUANG Can, LI Junyu, LIU Lilong, HUANG Liangke, WEI Lüquan. Application of Improved Model Based on LSTM in Ionospheric TEC Forecast (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-9 doi: 10.11728/cjss2025.05.2024-0112 |
[1] |
YAO Y B, LIU L, KONG J, et al. Global ionospheric modeling based on multi-GNSS, satellite altimetry, and Formosat-3/COSMIC data[J]. GPS Solutions, 2018, 22(4): 104 doi: 10.1007/s10291-018-0770-6
|
[2] |
袁运斌, 李敏, 霍星亮, 等. 北斗三号全球导航卫星系统全球广播电离层延迟修正模型(BDGIM)应用性能评估[J]. 测绘学报, 2021, 50(4): 436-447
YUAN Yunbin, LI Min, HUO Xingliang, et al. Research on performance of BeiDou global broadcast ionospheric delay correction model (BDGIM) of BDS-3[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 436-447
|
[3] |
朱威, 任晓东, 张小红. 不同纬度和站间距的电离层单星模型对PPP-RTK增强定位效果分析[J/OL]. 武汉大学学报(信息科学版), 1-13[2024-06-22]. https://doi.org/10.13203/j.whugis20230476
ZHU Wei, REN Xiaodong, ZHANG Xiaohong. Performance of PPP-RTK enhanced by slant ionospheric model based on reference stations with different latitudes and distances[J/OL]. Geomatics and Information Science of Wuhan University, (2024-06-22). https://doi.org/10.13203/j.whugis20230476
|
[4] |
程胡华, 詹彩菊, 赵亮, 等. IRI2016参考电离层模型在高度60~100km的精度分析[J]. 测绘学报, 2020, 49(1): 42-54
CHENG Huhua, ZHAN Caiju, ZHAO Liang, et al. Accuracy analysis of IRI2016 international reference ionosphere at altitude of 60~100 km[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 42-54
|
[5] |
QIAO J D, LIU Y, FAN Z Q, et al. Ionospheric TEC data assimilation based on Gauss–Markov Kalman filter[J]. Advances in Space Research, 2021, 68(10): 4189-4204 doi: 10.1016/j.asr.2021.08.004
|
[6] |
陈雨田, 刘立龙, 刘中流, 等. 纬度因素对季节性时序TEC短期预报模型的影响分析[J]. 大地测量与地球动力学, 2018, 38(6): 581-586
CHEN Yutian, LIU Lilong, LIU Zhongliu, et al. Analysis of the influence of latitude factors on seasonal time series TEC short-term forecast model[J]. Journal of Geodesy and Geodynamics, 2018, 38(6): 581-586
|
[7] |
尹萍, 闫晓鹏, 宁泽浩. 一种基于LSTM与IRI模型的电离层层析TEC组合预测方法[J]. 电波科学学报, 2022, 37(5): 852-861
YIN Ping, YAN Xiaopeng, NING Zehao. A combined forecasting method of ionospheric tomography TEC based on LSTM and IRI model[J]. Chinese Journal of Radio Science, 2022, 37(5): 852-861
|
[8] |
张富彬, 周晨, 王成, 等. 基于深度学习的全球电离层TEC预测[J]. 电波科学学报, 2021, 36(4): 553-561
ZHANG Fubin, ZHOU Chen, WANG Cheng, et al. Global ionospheric TEC prediction based on deep learning[J]. Chinese Journal of Radio Science, 2021, 36(4): 553-561
|
[9] |
TANG R X, ZENG F T, CHEN Z, et al. The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq[J]. Atmosphere, 2020, 11(4): 316 doi: 10.3390/atmos11040316
|
[10] |
唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
|
[11] |
XIE T, DAI Z Q, ZHU X W, et al. LSTM-based short-term ionospheric TEC forecast model and positioning accuracy analysis[J]. GPS Solutions, 2023, 27(2): 66 doi: 10.1007/s10291-023-01406-8
|
[12] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
|
[13] |
刘伟峰, 黄江, 邓柏昌, 等. 基于GPS的广州地区电离层不规则体纬向漂移速度计算分析[J]. 空间科学学报, 2012, 32(1): 48-54 doi: 10.11728/cjss2012.01.048
LIU Weifeng, HUANG Jiang, DENG Baichang, et al. Calculation analysis of ionospheric irregularity zonal drift velocity in Guangzhou based on GPS measurements[J]. Chinese Journal of Space Science, 2012, 32(1): 48-54 doi: 10.11728/cjss2012.01.048
|
[14] |
KAREVAN Z, SUYKENS J A K. Transductive LSTM for time-series prediction: an application to weather forecasting[J]. Neural Networks, 2020, 125: 1-9 doi: 10.1016/j.neunet.2019.12.030
|
[15] |
郝祎琛, 谢心喻, 丁家琦, 等. 瞬态多相流场图神经网络时空预测方法研究[J]. 哈尔滨工程大学学报, 2024, 45(9): 1761-1769
HAO Yichen, XIE Xinyu, DING Jiaqi, et al. Spatiotemporal prediction method for the transient multiphase flow field via graph neural network[J]. Journal of Harbin Engineering University, 2024, 45(9): 1761-1769
|
[16] |
赵鑫垚. 北斗/加速度计融合动态分析与预警[D]. 北京: 北京建筑大学, 2023
ZHAO Xinyao. Beidou/Accelerometer fusion dynamic analysis and early warning[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2023
|
[17] |
谢婷, 陈必焰, 匡翠林. 结合PCA和滑动时窗的电离层异常探测方法研究[J]. 大地测量与地球动力学, 2021, 41(10): 1085-1094
XIE Ting, CHEN Biyan, KUANG Cuilin. Study of ionospheric anomaly detection method combining PCA and sliding time window[J]. Journal of Geodesy and Geodynamics, 2021, 41(10): 1085-1094
|
[18] |
唐旺, 马尚昌, 李程. 基于滑动窗口的LSTM地温预测方法[J]. 成都理工大学学报(自然科学版), 2021, 48(3): 377-384
TANG Wang, MA Shangchang, LI Cheng. LSTM ground temperature prediction method based on sliding window[J]. Journal of Chengdu University of Technology (Science :Times New Roman;">& Technology Edition), 2021, 48(3): 377-384
|
[19] |
ZHANG X H, REN X D, WU F B, et al. Short-term prediction of ionospheric TEC based on ARIMA model[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 9-16
|
[20] |
刘立龙, 陈雨田, 黎峻宇, 等. 活跃期区域电离层总电子短期预报及适用性分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1757-1764
LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764
|
[21] |
DUNCAN R A. The equatorial F-region of the ionosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1960, 18(2/3): 89-100
|
[22] |
GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm?[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 5771-5792 doi: 10.1029/93JA02867
|
[23] |
REN X D, YANG P X, MEI D K, et al. Global ionospheric TEC forecasting for geomagnetic storm time using a deep learning-based multi-model ensemble method[J]. Space Weather, 2023, 21(3): e2022SW003231 doi: 10.1029/2022SW003231
|
[24] |
MUHAMMAD A, KÜLAHCI F. A semi-supervised total electron content anomaly detection method using LSTM-auto-encoder[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 241: 105979 doi: 10.1016/j.jastp.2022.105979
|
[25] |
SHI S S, ZHANG K F, SHI J Q, et al. Modeling TEC maps over China using particle swarm optimization neural networks and long-term ground-based GPS, COSMIC, and Fengyun data[J]. Space Weather, 2023, 21(4): e2022SW003357 doi: 10.1029/2022SW003357
|
[26] |
ZHANG L, WANG F L, SUN T, et al. A constrained optimization method based on BP neural network[J]. Neural Computing and Applications, 2018, 29(2): 413-421 doi: 10.1007/s00521-016-2455-9
|
[27] |
熊波, 李肖霖, 王宇晴, 等. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报, 2022, 65(7): 2365-2377
XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal Geophysics, 2022, 65(7): 2365-2377
|