| Citation: | WANG Shuai, QUAN Lin, WANG Kunpeng, LI Ling, YUAN Gang, KANG Lihua. A Multiplicative Model with Frequency-domain Features Superimposed on Time-domain Mutations for Predicting Ionospheric TEC Methods (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1439-1450 doi: 10.11728/cjss2025.05.2024-0123 |
| [1] |
YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 (袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048
YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048
|
| [2] |
ZHAI Dulin, ZHANG Xuemin, XIONG Pan, et al. Detection of ionospheric TEC anomalies based on Prophet Time-series Forecasting Model[J]. Earthquake, 2019, 39(2): 46-62 (翟笃林, 张学民, 熊攀, 等. Prophet 时序预测模型在电离层TEC异常探测中的应用[J]. 地震, 2019, 39(2): 46-62 doi: 10.3969/j.issn.1000-3274.2019.02.006
ZHAI Dulin, ZHANG Xuemin, XIONG Pan, et al. Detection of ionospheric TEC anomalies based on Prophet Time-series Forecasting Model[J]. Earthquake, 2019, 39(2): 46-62 doi: 10.3969/j.issn.1000-3274.2019.02.006
|
| [3] |
CHEN Yanhong, WAN Weixing, LIU Libo, et al. A statistical tec model based on the observation at Wuhan ionospheric observatory[J]. Earthquake, 2002, 22(1): 27-35 (陈艳红, 万卫星, 刘立波, 等. 武汉地区电离层电子浓度总含量的统计经验模式研究[J]. 空间科学学报, 2002, 22(1): 27-35 doi: 10.3969/j.issn.0254-6124.2002.01.005
CHEN Yanhong, WAN Weixing, LIU Libo, et al. A statistical tec model based on the observation at Wuhan ionospheric observatory[J]. Earthquake, 2002, 22(1): 27-35 doi: 10.3969/j.issn.0254-6124.2002.01.005
|
| [4] |
TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 (唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
|
| [5] |
XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics, 2022, 65(7): 2365-2377 (熊波, 李肖霖, 王宇晴, 等. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报, 2022, 65(7): 2365-2377 doi: 10.6038/cjg2022P0557
XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics, 2022, 65(7): 2365-2377 doi: 10.6038/cjg2022P0557
|
| [6] |
HUANG Z, YUAN H. Ionospheric single-station TEC short-term forecast using RBF neural network[J]. Radio Science, 2014, 49(4): 283-292 doi: 10.1002/2013RS005247
|
| [7] |
TANG Jun, GAO Xin. Prediction models of ionospheric TEC by Elman neural network with Bayesian regularization[J]. Journal of Geodesy and Geodynamics, 2020, 40(8): 799-805 (汤俊, 高鑫. 贝叶斯正则化的Elman神经网络电离层TEC预报模型[J]. 大地测量与地球动力学, 2020, 40(8): 799-805
TANG Jun, GAO Xin. Prediction models of ionospheric TEC by Elman neural network with Bayesian regularization[J]. Journal of Geodesy and Geodynamics, 2020, 40(8): 799-805
|
| [8] |
WEN Z C, LI S H, LI L H, et al. Ionospheric TEC prediction using Long Short-Term Memory deep learning network[J]. Astrophysics and Space Science, 2021, 366(1): 3 doi: 10.1007/s10509-020-03907-1
|
| [9] |
RUWALI A, KUMAR A J S, PRAKASH K B, et al. Implementation of hybrid deep learning model (LSTM-CNN) for ionospheric TEC forecasting using GPS data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1004-1008 doi: 10.1109/LGRS.2020.2992633
|
| [10] |
SRIVANI I, PRASAD G S V, RATNAM D V. A deep learning-based approach to forecast ionospheric delays for GPS signals[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1180-1184 doi: 10.1109/LGRS.2019.2895112
|
| [11] |
Shaikh M M, Butt R A, Khawaja A. Forecasting Total Electron Content (TEC) using CEEMDAN LSTM model[J]. Advances in Space Research, 2023, 71(10): 4361-4373 doi: 10.1016/j.asr.2022.12.054
|
| [12] |
KASELIMI M, VOULODIMOS A, DOULAMIS N, et al. A causal long short-term memory sequence to sequence model for TEC prediction using GNSS observations[J]. Remote Sensing, 2020, 12(9): 1354 doi: 10.3390/rs12091354
|
| [13] |
LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764 (刘立龙, 陈雨田, 黎峻宇, 等. 活跃期区域电离层总电子短期预报及适用性分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1757-1764
LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764
|
| [14] |
SONG R, ZHANG X M, ZHOU C, et al. Predicting TEC in China based on the neural networks optimized by genetic algorithm[J]. Advances in Space Research, 2018, 62(4): 745-759 doi: 10.1016/j.asr.2018.03.043
|
| [15] |
PEREZ R O. Using tensor flow-based neural network to estimate GNSS single frequency ionospheric delay (IONONet)[J]. Advances in Space Research, 2019, 63(5): 1607-1618 doi: 10.1016/j.asr.2018.11.011
|
| [16] |
CHEN Z, JIN M W, DENG Y, et al. Improvement of a deep learning algorithm for total electron content maps: Image completion[J]. Journal of Geophysical Research: Space Physics, 2019, 124(1): 790-800 doi: 10.1029/2018JA026167
|
| [17] |
LIAO Zhanghui, WU Beiping, SHEN Xinglin, et al. Analysis of ionospheric VTEC temporal-spatial characteristics in Guangxi and surrounding[J]. Science of Surveying and Mapping, 2018, 43(9): 40-45,62 (廖章回, 吴北平, 申兴林, 等. 广西及周边地区电离层时空特性分析[J]. 测绘科学, 2018, 43(9): 40-45,62
LIAO Zhanghui, WU Beiping, SHEN Xinglin, et al. Analysis of ionospheric VTEC temporal-spatial characteristics in Guangxi and surrounding[J]. Science of Surveying and Mapping, 2018, 43(9): 40-45,62
|
| [18] |
JI Changdong, WANG Qiang, WANG Guipeng, et al. TEC prediction of ionosphere based on deep learning LSTM model[J]. Journal of Navigation and Positioning, 2019, 7(3): 76-81 (吉长东, 王强, 王贵朋, 等. 深度学习 LSTM 模型的电离层总电子含量预报[J]. 导航定位学报, 2019, 7(3): 76-81 doi: 10.3969/j.issn.2095-4999.2019.03.013
JI Changdong, WANG Qiang, WANG Guipeng, et al. TEC prediction of ionosphere based on deep learning LSTM model[J]. Journal of Navigation and Positioning, 2019, 7(3): 76-81 doi: 10.3969/j.issn.2095-4999.2019.03.013
|
| [19] |
TAYLOR S J, LETHAM B. Forecasting at scale[J]. The American Statistician, 2018, 72(1): 37-45 doi: 10.1080/00031305.2017.1380080
|
| [20] |
QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3047 (全林, 薛军琛, 胡小工, 等. 中国区域 GPS 单频点定位在不同类型磁暴主相期间定位性能分析[J]. 地球物理学报, 2021, 64(9): 3030-3047 doi: 10.6038/cjg2021P0331
QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3047 doi: 10.6038/cjg2021P0331
|
| [21] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
|