Turn off MathJax
Article Contents
WANG Shuai, QUAN Lin, WANG Kunpeng, LI Ling, YUAN Gang, KANG Lihua. A Multiplicative Model with Frequency-domain Features Superimposed on Time-domain Mutations for Predicting Ionospheric TEC Methods (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1439-1450 doi: 10.11728/cjss2025.05.2024-0123
Citation: WANG Shuai, QUAN Lin, WANG Kunpeng, LI Ling, YUAN Gang, KANG Lihua. A Multiplicative Model with Frequency-domain Features Superimposed on Time-domain Mutations for Predicting Ionospheric TEC Methods (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1439-1450 doi: 10.11728/cjss2025.05.2024-0123

A Multiplicative Model with Frequency-domain Features Superimposed on Time-domain Mutations for Predicting Ionospheric TEC Methods

doi: 10.11728/cjss2025.05.2024-0123 cstr: 32142.14.cjss.2024-0123
  • Received Date: 2024-09-30
  • Rev Recd Date: 2025-04-28
  • Available Online: 2025-04-29
  • Total Electronic Content (TEC) is an important characteristic parameter of the ionosphere, which has a great influence on the navigation error correction and other applications, but the current ionospheric TEC prediction accuracy cannot fully meet the demand, and there are deficiencies in the accuracy and lead time. The paper focuses on the needs of regional ionospheric TEC forecasting, comprehensively considers the characteristics of ionospheric TEC in both frequency and time domains, analyzes the ionospheric TEC changes in multiple cycle lengths in the frequency domain according to the characteristics of trend, periodicity, and suddenness of the changes in the ionospheric TEC affected by solar activities, considers the suddenness of the geomagnetic storms and other factors on the ionospheric TEC in the time domain, and considers the Dst index and latitude/longitude as the input parameters for forecasting. Forecast input parameters, and train the specificity of the magnetosphere-ionosphere coupling in each region. The experimental results show that the Root Mean Square Error (RMSE) of the proposed method is better than 1.262 Total Electronic Content Unit (TECU) in the middle latitude region during the geomagnetic lull period. The RMSE of 1-day forecast value is better than 1.094 TECU, and the RMSE of 7-day forecast value is better than 2.771 TECU during high solar activity years. The RMSE of the 7-day forecast value is better than 4.186 TECU and the RMSE of the 1-day forecast value is better than 4.115 TECU during the geomagnetic active period. In this paper, a prediction model with a 7-day lead is established, and the method shows good performance in forecasting accuracy and timeliness.

     

  • loading
  • [1]
    YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 (袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048

    YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048
    [2]
    ZHAI Dulin, ZHANG Xuemin, XIONG Pan, et al. Detection of ionospheric TEC anomalies based on Prophet Time-series Forecasting Model[J]. Earthquake, 2019, 39(2): 46-62 (翟笃林, 张学民, 熊攀, 等. Prophet 时序预测模型在电离层TEC异常探测中的应用[J]. 地震, 2019, 39(2): 46-62 doi: 10.3969/j.issn.1000-3274.2019.02.006

    ZHAI Dulin, ZHANG Xuemin, XIONG Pan, et al. Detection of ionospheric TEC anomalies based on Prophet Time-series Forecasting Model[J]. Earthquake, 2019, 39(2): 46-62 doi: 10.3969/j.issn.1000-3274.2019.02.006
    [3]
    CHEN Yanhong, WAN Weixing, LIU Libo, et al. A statistical tec model based on the observation at Wuhan ionospheric observatory[J]. Earthquake, 2002, 22(1): 27-35 (陈艳红, 万卫星, 刘立波, 等. 武汉地区电离层电子浓度总含量的统计经验模式研究[J]. 空间科学学报, 2002, 22(1): 27-35 doi: 10.3969/j.issn.0254-6124.2002.01.005

    CHEN Yanhong, WAN Weixing, LIU Libo, et al. A statistical tec model based on the observation at Wuhan ionospheric observatory[J]. Earthquake, 2002, 22(1): 27-35 doi: 10.3969/j.issn.0254-6124.2002.01.005
    [4]
    TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 (唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042

    TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
    [5]
    XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics, 2022, 65(7): 2365-2377 (熊波, 李肖霖, 王宇晴, 等. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报, 2022, 65(7): 2365-2377 doi: 10.6038/cjg2022P0557

    XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics, 2022, 65(7): 2365-2377 doi: 10.6038/cjg2022P0557
    [6]
    HUANG Z, YUAN H. Ionospheric single-station TEC short-term forecast using RBF neural network[J]. Radio Science, 2014, 49(4): 283-292 doi: 10.1002/2013RS005247
    [7]
    TANG Jun, GAO Xin. Prediction models of ionospheric TEC by Elman neural network with Bayesian regularization[J]. Journal of Geodesy and Geodynamics, 2020, 40(8): 799-805 (汤俊, 高鑫. 贝叶斯正则化的Elman神经网络电离层TEC预报模型[J]. 大地测量与地球动力学, 2020, 40(8): 799-805

    TANG Jun, GAO Xin. Prediction models of ionospheric TEC by Elman neural network with Bayesian regularization[J]. Journal of Geodesy and Geodynamics, 2020, 40(8): 799-805
    [8]
    WEN Z C, LI S H, LI L H, et al. Ionospheric TEC prediction using Long Short-Term Memory deep learning network[J]. Astrophysics and Space Science, 2021, 366(1): 3 doi: 10.1007/s10509-020-03907-1
    [9]
    RUWALI A, KUMAR A J S, PRAKASH K B, et al. Implementation of hybrid deep learning model (LSTM-CNN) for ionospheric TEC forecasting using GPS data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1004-1008 doi: 10.1109/LGRS.2020.2992633
    [10]
    SRIVANI I, PRASAD G S V, RATNAM D V. A deep learning-based approach to forecast ionospheric delays for GPS signals[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1180-1184 doi: 10.1109/LGRS.2019.2895112
    [11]
    Shaikh M M, Butt R A, Khawaja A. Forecasting Total Electron Content (TEC) using CEEMDAN LSTM model[J]. Advances in Space Research, 2023, 71(10): 4361-4373 doi: 10.1016/j.asr.2022.12.054
    [12]
    KASELIMI M, VOULODIMOS A, DOULAMIS N, et al. A causal long short-term memory sequence to sequence model for TEC prediction using GNSS observations[J]. Remote Sensing, 2020, 12(9): 1354 doi: 10.3390/rs12091354
    [13]
    LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764 (刘立龙, 陈雨田, 黎峻宇, 等. 活跃期区域电离层总电子短期预报及适用性分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1757-1764

    LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764
    [14]
    SONG R, ZHANG X M, ZHOU C, et al. Predicting TEC in China based on the neural networks optimized by genetic algorithm[J]. Advances in Space Research, 2018, 62(4): 745-759 doi: 10.1016/j.asr.2018.03.043
    [15]
    PEREZ R O. Using tensor flow-based neural network to estimate GNSS single frequency ionospheric delay (IONONet)[J]. Advances in Space Research, 2019, 63(5): 1607-1618 doi: 10.1016/j.asr.2018.11.011
    [16]
    CHEN Z, JIN M W, DENG Y, et al. Improvement of a deep learning algorithm for total electron content maps: Image completion[J]. Journal of Geophysical Research: Space Physics, 2019, 124(1): 790-800 doi: 10.1029/2018JA026167
    [17]
    LIAO Zhanghui, WU Beiping, SHEN Xinglin, et al. Analysis of ionospheric VTEC temporal-spatial characteristics in Guangxi and surrounding[J]. Science of Surveying and Mapping, 2018, 43(9): 40-45,62 (廖章回, 吴北平, 申兴林, 等. 广西及周边地区电离层时空特性分析[J]. 测绘科学, 2018, 43(9): 40-45,62

    LIAO Zhanghui, WU Beiping, SHEN Xinglin, et al. Analysis of ionospheric VTEC temporal-spatial characteristics in Guangxi and surrounding[J]. Science of Surveying and Mapping, 2018, 43(9): 40-45,62
    [18]
    JI Changdong, WANG Qiang, WANG Guipeng, et al. TEC prediction of ionosphere based on deep learning LSTM model[J]. Journal of Navigation and Positioning, 2019, 7(3): 76-81 (吉长东, 王强, 王贵朋, 等. 深度学习 LSTM 模型的电离层总电子含量预报[J]. 导航定位学报, 2019, 7(3): 76-81 doi: 10.3969/j.issn.2095-4999.2019.03.013

    JI Changdong, WANG Qiang, WANG Guipeng, et al. TEC prediction of ionosphere based on deep learning LSTM model[J]. Journal of Navigation and Positioning, 2019, 7(3): 76-81 doi: 10.3969/j.issn.2095-4999.2019.03.013
    [19]
    TAYLOR S J, LETHAM B. Forecasting at scale[J]. The American Statistician, 2018, 72(1): 37-45 doi: 10.1080/00031305.2017.1380080
    [20]
    QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3047 (全林, 薛军琛, 胡小工, 等. 中国区域 GPS 单频点定位在不同类型磁暴主相期间定位性能分析[J]. 地球物理学报, 2021, 64(9): 3030-3047 doi: 10.6038/cjg2021P0331

    QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3047 doi: 10.6038/cjg2021P0331
    [21]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article Views(706) PDF Downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return