Citation: | YIN Hanke, YUAN Jing, ZHAO Shufan, SHEN Xuhui, JIN Xiaoyuan, WANG Qiao, LIAO Li, YANG Dehe. A Robust and High-Speed Automated Detection Model for Lightning Whistler (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-14 doi: 10.11728/cjss2025.05.2024-0132 |
[1] |
STOREY L R O. An investigation of whistling atmospherics[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1953, 246(908): 113-141. doi: 10.1098/rsta.1953.0011
|
[2] |
HELLIWELL R A. Whistlers and related ionospheric phenomena[J]. Geophysical Journal International, 1966, 11(5): 563-564. doi: 10.1111/j.1365-246x.1966.tb03172.x
|
[3] |
SMITH R L, HELLIWELL R A, YABROFF I W. A theory of trapping of whistlers in field-aligned columns of enhanced ionization[J]. Journal of Geophysical Research, 1960, 65(3): 815-823. doi: 10.1029/JZ065i003p00815
|
[4] |
EDGAR B C. The Structure of the Magnetosphere as Deduced from Magnetospherically Reflected Whistlers [R]. No. NSSDC-ID-66-049A-17-PM. Greenbelt, MD: NASA National Space Science Data Center, 1972.
|
[5] |
Walker A D M. The theory of whistler propagation[J]. Reviews of Geophysics, 1976, 14(4): 629-638. doi: 10.1029/RG014i004p00629
|
[6] |
TANG R X, YUAN A, LI H M, et al. Influence of solar wind dynamic pressure on distribution of whistler mode waves based on van Allen probe observations[J]. Journal of Geophysical Research: Space Physics, 2023, 128(4): e2022JA031181. doi: 10.1029/2022JA031181
|
[7] |
WOODFIELD E E, GLAUERT S A, MENIETTI J D, et al. Rapid electron acceleration in low-density regions of Saturn's radiation belt by whistler mode chorus waves[J]. Geophysical Research Letters, 2019, 46(13): 7191-7198. doi: 10.1029/2019GL083071
|
[8] |
WOODFIELD E E, GLAUERT S A, MENIETTI J D, et al. Acceleration of electrons by whistler-mode hiss waves at Saturn[J]. Geophysical Research Letters, 2022, 49(3): e2021GL096213. doi: 10.1029/2021GL096213
|
[9] |
SANTOLÍK O, PARROT M, INAN U S, et al. Propagation of unducted whistlers from their source lightning: a case study[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03212. doi: 10.1029/2008JA013776
|
[10] |
周怀北, 肖佐, 孙传礼. 根据哨声频谱反演云—地闪电参数[J]. 电波科学学报, 1989, 4(1): 1-7
ZHOU Huaibei, XIAO Zuo, SUN Chuanli. A study of cloud-earth lightning parameters by using whistler spectrum[J]. Chinese Journal of Radio Science, 1989, 4(1): 1-7
|
[11] |
CHEN Y P, NI B B, GU X D, et al. First observations of low latitude whistlers using WHU ELF/VLF receiver system[J]. Science China Technological Sciences, 2017, 60(1): 166-174. doi: 10.1007/s11431-016-6103-5
|
[12] |
CARPENTER D L, ANDERSON R R. An ISEE/whistler model of equatorial electron density in the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 1992, 97(A2): 1097-1108. doi: 10.1029/91JA01548
|
[13] |
SINGH A K, VERMA U P, BHARGAWA A. Remote sensing of mid/upper atmosphere using ELF/VLF waves[J]. Global Journal of Science Frontier Research: A Physics and Space Science, 2018, 18(10): 11-21
|
[14] |
OIKE Y, KASAHARA Y, GOTO Y. Spatial distribution and temporal variations of occurrence frequency of lightning whistlers observed by VLF/WBA onboard Akebono[J]. Radio Science, 2014, 49(9): 753-764. doi: 10.1002/2014RS005523
|
[15] |
BAYUPATI I P A, KASAHARA Y, GOTO Y. Study of dispersion of lightning whistlers observed by Akebono satellite in the Earth’s plasmasphere[J]. IEICE Transactions on Communications, 2012, E95. B(11): 3472-3479. DOI: 10.1587/transcom.E95.B.3472
|
[16] |
CLILVERD M A, NUNN D, LEV-TOV S J, et al. Determining the size of lightning-induced electron precipitation patches[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A8): SIA10. doi: 10.1029/2001JA000301
|
[17] |
KISHORE A, DEO A, KUMAR S. Upper atmospheric remote sensing using ELF-VLF lightning generated tweek and whistler sferics[J]. The South Pacific Journal of Natural and Applied Sciences, 2016, 34(1): 12-20. doi: 10.1071/sp16002
|
[18] |
PARROT M, PINÇON J L, SHKLYAR D. Short-fractional hop whistler rate observed by the low-altitude satellite DEMETER at the end of the solar cycle 23[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3522-3531. doi: 10.1029/2018JA026176
|
[19] |
HORNE R B, GLAUERT S A, MEREDITH N P, et al. Space weather impacts on satellites and forecasting the Earth's electron radiation belts with SPACECAST[J]. Space Weather, 2013, 11(4): 169-186. doi: 10.1002/swe.20023
|
[20] |
LINZMAYER V, NĚMEC F, SANTOLÍK O, et al. Lightning-induced energetic electron precipitation observed in long-term DEMETER spacecraft measurements[J]. Journal of Geophysical Research: Space Physics, 2024, 129(8): e2024JA032713 doi: 10.1029/2024JA032713
|
[21] |
FEINLAND M, BLUM L W, MARSHALL R A, et al. Lightning-induced relativistic electron precipitation from the inner radiation belt[J]. Nature Communications, 2024, 15(1): 8721. doi: 10.1038/s41467-024-53036-4
|
[22] |
LICHTENBERGER J, FERENCZ C, BODNÁR L, et al. Automatic whistler detector and analyzer system: automatic whistler detector[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A12): A12201. doi: 10.1029/2008JA013467
|
[23] |
STANFORD VLF GROUP. Automated Detection of Whistlers for the TARANIS Space[R]. Stanford, CA: Stanford University, 2009.
|
[24] |
DHARMA K S, BAYUPATI I P A, BUANA P W. Automatic lightning whistler detection using connected component labeling method[J]. Journal of Theoretical and Applied Information Technology, 2014, 66(2): 638-645.
|
[25] |
KONAN O J E Y, MISHRA A K, LOTZ S. Machine learning techniques to detect and characterise whistler radio waves[OL]. arXiv: 2002.01244. (2020-02-04) [2023-10-15]. https://arxiv.org/abs/2002.01244. DOI: 10.48550/arXiv.2002.01244.
|
[26] |
袁静, 王桥, 杨德贺, 等. 张衡一号感应磁力仪数据闪电哨声波自动识别[J]. 地球物理学报, 2021, 64(11): 3905-3924 doi: 10.6038/cjg2021O0164
YUAN Jing, WANG Qiao, YANG Dehe, et al. Automatic recognition algorithm of lightning whistlers observed by the Search Coil Magnetometer onboard the Zhangheng-1 Satellite[J]. Chinese Journal of Geophysics, 2021, 64(11): 3905-3924 doi: 10.6038/cjg2021O0164
|
[27] |
PATAKI B Á, LICHTENBERGER J, CLILVERD M, et al. Monitoring space weather: using automated, accurate neural network based whistler segmentation for whistler inversion[J]. Space Weather, 2022, 20(2): e2021SW002981. doi: 10.1029/2021SW002981
|
[28] |
HARID V, LIU C, PANG Y, et al. Automated large-scale extraction of whistlers using mask-scoring regional convolutional neural network[J]. Geophysical Research Letters, 2021, 48(15): e2021GL093819. doi: 10.1029/2021GL093819
|
[29] |
路超, 泽仁志玛, 杨德贺, 等. 改进YOLOv5的闪电哨声波轻量化自动检测模型[J]. 空间科学学报, 2024, 44(3): 458-473
LU Chao, ZEREN Zhima, YANG Dehe, et al. Lightweight Automatic Detection Model for Lightning Whistle Waves Based on Improved YOLOv5. Chinese Journal of Space Science, 2024, 44(3): 458-473
|
[30] |
袁静, 王子杰, 泽仁志玛, 等. 基于智能语音技术的闪电哨声波自动识别[J]. 地球物理学报, 2022, 65(3): 882-897 doi: 10.6038/cjg2022P0365
YUAN Jing, WANG Zijie, ZEREN Zhima, et al. Automatic recognition algorithm of the lightning whistler waves by using speech processing technology[J]. Chinese Journal of Geophysics, 2022, 65(3): 882-897 doi: 10.6038/cjg2022P0365
|
[31] |
ZEREN Z M, HU Y P, PIERSANTI M, et al. The seismic electromagnetic emissions during the 2010 Mw 7.8 Northern Sumatra Earthquake revealed by DEMETER satellite[J]. Frontiers in Earth Science, 2020, 8: 572393. doi: 10.3389/feart.2020.572393
|
[32] |
HUANG J P, LEI J G, LI S X, et al. The electric field detector (EFD) onboard the ZH-1 satellite and first observational results[J]. Earth and Planetary Physics, 2018, 2(6): 469-478. doi: 10.26464/epp2018045
|
[33] |
KAPLAN J O, LAU K H K. The WGLC global gridded lightning climatology and time series[J]. Earth System Science Data, 2021, 13(7): 3219-3237. doi: 10.5194/essd-13-3219-2021
|
[34] |
MERMELSTEIN P. Distance measures for speech recognition, psychological and instrumental[M]//CHEN C H. Pattern Recognition and Artificial Intelligence. New York: Academic Press, 1976: 374-388
|
[35] |
ZHOU D Q, HOU Q B, CHEN Y P, et al. Rethinking bottleneck structure for efficient mobile network design[C]//Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 680-697. DOI: 10.1007/978-3-030-58580-8_40
|
[36] |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988
|
[37] |
HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 6402-6411
|
[38] |
赵庶凡, 廖力, 张学民. 地面VLF波穿透电离层的能量衰减变化[J]. 地球物理学报, 2017, 60(8): 3004-3014 doi: 10.6038/cjg20170809
ZHAO Shufan, LIAO Li, ZHANG Xuemin. Trans-ionospheric VLF wave power absorption of terrestrial VLF signal[J]. Chinese Journal of Geophysics, 2017, 60(8): 3004-3014 doi: 10.6038/cjg20170809
|
[39] |
BALAN N, LIU L B, LE H J. A brief review of equatorial ionization anomaly and ionospheric irregularities[J]. Earth and Planetary Physics, 2018, 2(4): 257-275. doi: 10.26464/epp2018025
|