| Citation: | WANG Yanqiu, SUN Zhibin, LU Xiaoxiao, ZHENG Fu. Local Temperature Gradient Laser Pulse Triggered Nucleation Experimental Technology under Electrostatic Levitation (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1518-1531 doi: 10.11728/cjss2025.06.2024-0095 |
| [1] |
WANG F L, DAI B, LIU X F, et al. Containerless heating process of a deeply undercooled metal droplet by electrostatic levitation[J]. Chinese Physics Letters, 2015, 32(11): 114101 doi: 10.1088/0256-307X/32/11/114101
|
| [2] |
YU J D, PARADIS P F, YODA S, et al. Dielectric properties of BaTiO3 synthesized by containerless processing technique[J]. Journal of the Korean Physical Society, 2005, 46(1): 15-18
|
| [3] |
ISHIKAWA T, KOYAMA C, PARADIS P F, et al. Densities of liquid Re, Os, and Ir, and their temperature dependence measured by an electrostatic levitator[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105305 doi: 10.1016/j.ijrmhm.2020.105305
|
| [4] |
ZHAO D D, YANG F, HOLLAND-MORITZ D, et al. In situ studies of liquid-liquid phase separation, solidification sequence and dendrite growth kinetics in electrostatically levitated Ti–Y alloys[J]. Acta Materialia, 2021, 213: 116962
|
| [5] |
LI D M, WANG W L, JIA Y, et al. Structural optimization of radial containment ultrasonic suspension bearing[J]. Optics and Precision Engineering, 2021, 29(10): 2375-2385 (李东明, 王万雷, 贾颖, 等. 径向包容式超声悬浮轴承结构优化[J]. 光学精密工程, 2021, 29(10): 2375-2385 doi: 10.37188/OPE.20212910.2375
LI D M, WANG W L, JIA Y, et al. Structural optimization of radial containment ultrasonic suspension bearing[J]. Optics and Precision Engineering, 2021, 29(10): 2375-2385 doi: 10.37188/OPE.20212910.2375
|
| [6] |
GREFFRATH F, PRIELER R, TELLE R. A new method for the estimation of high temperature radiant heat emittance by means of aero-acoustic levitation[J]. Infrared Physics :Times New Roman;">& Technology, 2014, 67: 333-337
|
| [7] |
LIU H, YANG Z P, WU D Y. Estimation of rotor speed using displacement signals in magnetic suspended flywheel[J]. Optics and Precision Engineering, 2020, 28(5): 1116-1123 (刘虎, 杨振鹏, 武登云. 基于位移信号的磁悬浮飞轮转速估计[J]. 光学精密工程, 2020, 28(5): 1116-1123
LIU H, YANG Z P, WU D Y. Estimation of rotor speed using displacement signals in magnetic suspended flywheel[J]. Optics and Precision Engineering, 2020, 28(5): 1116-1123
|
| [8] |
MOHR M, WUNDERLICH R K, KOCH S, et al. Surface tension and viscosity of Cu50Zr50 measured by the oscillating drop technique on board the international space station[J]. Microgravity Science and Technology, 2019, 31(2): 177-184 doi: 10.1007/s12217-019-9678-1
|
| [9] |
JEON S, SANSOUCIE M P, MATSON D M. Hyper-cooling limit, heat of fusion, and temperature-dependent specific heat of Fe-Cr-Ni melts[J]. The Journal of Chemical Thermodynamics, 2019, 138: 51-58 doi: 10.1016/j.jct.2019.06.001
|
| [10] |
LEE J, SANSOUCIE M P. Experiments using a ground-based electrostatic levitator and numerical modeling of melt convection for the iron-cobalt system in support of space experiments[J]. Jom, 2017, 69(8): 1298-1302 doi: 10.1007/s11837-017-2387-6
|
| [11] |
TAMARU H, KOYAMA C, SARUWATARI H, et al. Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO[J]. Microgravity Science and Technology, 2018, 30(5): 643-651 doi: 10.1007/s12217-018-9631-8
|
| [12] |
HERLACH D M, KOBOLD R, KLEIN S. Crystal nucleation and growth in undercooled melts of pure Zr, binary Zr-based and ternary Zr-Ni-Cu glass-forming alloys[J]. Jom, 2018, 70(5): 726-732 doi: 10.1007/s11837-018-2782-7
|
| [13] |
LEE G W, JEON S, PARK C, et al. Crystal–liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy[J]. The Journal of Chemical Thermodynamics, 2013, 63: 1-6 doi: 10.1016/j.jct.2013.03.012
|
| [14] |
KOSTANOVSKII A V, KOSTANOVSKAYA M E. Thermophysical properties of stable and supercooled liquid carbon[J]. Measurement Techniques, 2019, 62(2): 532-539
|
| [15] |
HU L, JIN Y J, LIN M J, et al. Temperature dependence of thermophysical properties for liquid Zr-Sn-Nb-Fe alloy measured at electrostatic levitation state[J]. Chemical Physics Letters, 2021, 776: 138667 doi: 10.1016/j.cplett.2021.138667
|
| [16] |
SUN Y N, WANG F L, YU Q, et al. Thermophysical property measurements by electrostatic levitation in material science[J]. Materials Reports, 2016, 30(S2): 253-258 (孙一宁, 王飞龙, 于强, 等. 静电悬浮条件下的材料典型热物理性质测量[J]. 材料导报, 2016, 30(S2): 253-258
SUN Y N, WANG F L, YU Q, et al. Thermophysical property measurements by electrostatic levitation in material science[J]. Materials Reports, 2016, 30(S2): 253-258
|
| [17] |
CHEN D Y, GUO Q Y, DONG W B, et al. Control system of electrostatic levitation based on high-speed vision[J]. Optics and Precision Engineering, 2019, 27(11): 2343-2353 (陈东阳, 郭清远, 董文博, 等. 基于高速视觉的静电悬浮控制系统[J]. 光学精密工程, 2019, 27(11): 2343-2353 doi: 10.3788/OPE.20192711.2343
CHEN D Y, GUO Q Y, DONG W B, et al. Control system of electrostatic levitation based on high-speed vision[J]. Optics and Precision Engineering, 2019, 27(11): 2343-2353 doi: 10.3788/OPE.20192711.2343
|
| [18] |
XUE S Q, DONG W B, CHEN D Y, et al. Analysis of electrostatic levitation control system and oscillation method for material properties measurement[J]. Review of Scientific Instruments, 2021, 92(6): 065111 doi: 10.1063/5.0026974
|
| [19] |
RATHZ T J, ROBINSON M B, HYERS R W, et al. Triggered nucleation in Ni60Nb40 using an electrostatic levitator[J]. Journal of Materials Science Letters, 2002, 21(4): 301-303 doi: 10.1023/A:1017928022508
|
| [20] |
HERLACH D M. Non-equilibrium solidification of undercooled metallic melts[J]. Metals, 2014, 4(2): 196-234 doi: 10.3390/met4020196
|
| [21] |
AOYAMA T, PARADIS P F, ISHIKAWA T, et al. Observation of rapid solidification of deeply undercooled Si melts using electrostatic levitation[J]. Materials Science and Engineering: A, 2004, 375/376/377: 460-463
|
| [22] |
YANG S J. Electrostatic Levitation Processing and Rapid Solidification Mechanism of Refractory Metallic Materials[D]. Xi’an: Northwestern Polytechnical University, 2018 (杨尚京. 难熔金属材料的静电悬浮过程与快速凝固机理研究[D]. 西安: 西北工业大学, 2018
YANG S J. Electrostatic Levitation Processing and Rapid Solidification Mechanism of Refractory Metallic Materials[D]. Xi’an: Northwestern Polytechnical University, 2018
|
| [23] |
CHEN H M, ZHAO X Y. Principles and Applications of Laser[M]. Beijing: Publishing House of Electronics Industry, 2009 (陈鹤鸣, 赵新彦. 激光原理及应用[M]. 北京: 电子工业出版社, 2009
CHEN H M, ZHAO X Y. Principles and Applications of Laser[M]. Beijing: Publishing House of Electronics Industry, 2009
|
| [24] |
ANTONY K, ARIVAZHAGAN N, SENTHILKUMARAN K. Numerical and experimental investigations on laser melting of stainless steel 316 L metal powders[J]. Journal of Manufacturing Processes, 2014, 16(3): 345-355 doi: 10.1016/j.jmapro.2014.04.001
|
| [25] |
PARADIS P F, ISHIKAWA T, YODA S. Non-contact measurements of thermophysical properties of niobium at high temperature[J]. Journal of Materials Science, 2001, 36(21): 5125-5130 doi: 10.1023/A:1012477308332
|
| [26] |
PARADIS P F, ISHIKAWA T, SAITA Y, et al. Containerless property measurements of liquid palladium[J]. International Journal of Thermophysics, 2004, 25(6): 1905-1912 doi: 10.1007/s10765-004-7744-3
|
| [27] |
WANG L, HU L, ZHAO J F, et al. Ultrafast growth kinetics of titanium dendrites investigated by electrostatic levitation experiments and molecular dynamics simulations[J]. Chemical Physics Letters, 2020, 742: 137141 doi: 10.1016/j.cplett.2020.137141
|
| [28] |
LIU F. Design of nanostructured materials by thermos-kinetic couple[J/OL]. The Chinese Journal of Nonferrous Metals, (2023-04-10). http://kns.cnki.net/kcms/detail/43.1238.TG.20230410.1325.001.html (刘峰. 基于热力学-动力学耦合的纳米晶结构材料设计[J/OL]. 中国有色金属学报, 1-15[2025-06-27]. http://kns.cnki.net/kcms/detail/43.1238.TG.20230410.1325.001.html
LIU F. Design of nanostructured materials by thermos-kinetic couple[J/OL]. The Chinese Journal of Nonferrous Metals, (2023-04-10). http://kns.cnki.net/kcms/detail/43.1238.TG.20230410.1325.001.html
|
| [29] |
VINET B, MAGNUSSON L, FREDRIKSSON H, et al. Correlations between surface and interface energies with respect to crystal nucleation[J]. Journal of Colloid and Interface Science, 2002, 255(2): 363-374 doi: 10.1006/jcis.2002.8627
|
| [30] |
TURNBULL D. Formation of crystal nuclei in liquid metals[J]. Journal of Applied Physics, 1950, 21(10): 1022-1028 doi: 10.1063/1.1699435
|
| [31] |
WU H M. Research on Laser Heating System Based on Spot Detection[D]. Taiyuan: North Central University, 2019 (武慧敏. 基于光斑检测的激光加热系统研究[D]. 太原: 中北大学, 2019
WU H M. Research on Laser Heating System Based on Spot Detection[D]. Taiyuan: North Central University, 2019
|
| [32] |
YU K, HUANG D X, YIN J J, et al. Reflected-intensity distribution of a thin-film filter with oblique incidence of a Gaussian beam under-parallel case[J]. Chinese Journal of Laser, 2012, 39(8): 0807003 (俞侃, 黄德修, 尹娟娟, 等. 高斯光束斜入射非平行薄膜滤光片的反射光强分布[J]. 中国激光, 2012, 39(8): 0807003 doi: 10.3788/CJL201239.0807003
YU K, HUANG D X, YIN J J, et al. Reflected-intensity distribution of a thin-film filter with oblique incidence of a Gaussian beam under-parallel case[J]. Chinese Journal of Laser, 2012, 39(8): 0807003 doi: 10.3788/CJL201239.0807003
|
| [33] |
YOU K M. Research on the Propagation and Focusing Properties of Broadband Laser Pulses[D]. Wuhan: Wuhan University of Technology, 2009 (游开明. 宽带脉冲激光的传输和聚焦特性研究[D]. 武汉: 武汉理工大学, 2009
YOU K M. Research on the Propagation and Focusing Properties of Broadband Laser Pulses[D]. Wuhan: Wuhan University of Technology, 2009
|
| [34] |
WANG L, HU L, YANG S J, et al. Thermophysical properties and rapid dendritic growth of liquid zirconium under electrostatic levitation condition[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1816-1823 (王磊, 胡亮, 杨尚京, 等. 静电悬浮条件下液态锆的热物理性质与快速枝晶生长[J]. 中国有色金属学报, 2018, 28(9): 1816-1823
WANG L, HU L, YANG S J, et al. Thermophysical properties and rapid dendritic growth of liquid zirconium under electrostatic levitation condition[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1816-1823
|
| [35] |
LU X X, ZHANG M H, LIU X K, et al. Nucleation and solidification measurement of deep-undercooling molten zirconium under electrostatic levitation[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(3): 804-816 (陆潇晓, 张明辉, 刘晓珂, 等. 静电悬浮深过冷熔融锆形核凝固测量[J]. 中国有色金属学报, 2023, 33(3): 804-816
LU X X, ZHANG M H, LIU X K, et al. Nucleation and solidification measurement of deep-undercooling molten zirconium under electrostatic levitation[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(3): 804-816
|
| [36] |
YU J C, YAN J F, LI X, et al. Progress in ultrafast laser-induced nucleation and crystal growth[J]. Chinese Journal of Lasers, 2021, 48(2): 0202020 (俞嘉晨, 闫剑锋, 李欣, 等. 超快激光调控晶体形核与生长过程研究进展[J]. 中国激光, 2021, 48(2): 0202020 doi: 10.3788/CJL202148.0202020
YU J C, YAN J F, LI X, et al. Progress in ultrafast laser-induced nucleation and crystal growth[J]. Chinese Journal of Lasers, 2021, 48(2): 0202020 doi: 10.3788/CJL202148.0202020
|
| [37] |
LU X X, LIU X K, LI H, et al. RBF neural network in electrostatic levitation position control[J]. Chinese Journal of Space Science, 2022, 42(5): 952-960 (陆潇晓, 刘晓珂, 李虎, 等. RBF神经网络在静电悬浮位置控制中的应用[J]. 空间科学学报, 2022, 42(5): 952-960 doi: 10.11728/cjss2022.05.210927103
LU X X, LIU X K, LI H, et al. RBF neural network in electrostatic levitation position control[J]. Chinese Journal of Space Science, 2022, 42(5): 952-960 doi: 10.11728/cjss2022.05.210927103
|