| Citation: | WU Xing, ZHOU Xiang, LI Keyi, LIU Yang. Principles, Current Status and Prospects of Hydrated Minerals Detection on Mars with Hyperspectral Remote Sensing (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1482-1491 doi: 10.11728/cjss2025.06.2024-0173 |
| [1] |
PAN Yongxin, WANG Chi. Developing the planetary science research for the sustainable deep space exploration of China[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(2): 181-185 (潘永信, 王赤. 国家深空探测战略可持续发展需求: 行星科学研究[J]. 中国科学基金, 2021, 35(2): 181-185
PAN Yongxin, WANG Chi. Developing the planetary science research for the sustainable deep space exploration of China[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(2): 181-185
|
| [2] |
WU Weiren, WANG Chi, LIU Yang, et al. Frontier scientific questions in deep space exploration[J]. Chinese Science Bulletin, 2023, 68(6): 606-627 (吴伟仁, 王赤, 刘洋, 等. 深空探测之前沿科学问题探析[J]. 科学通报, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667
WU Weiren, WANG Chi, LIU Yang, et al. Frontier scientific questions in deep space exploration[J]. Chinese Science Bulletin, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667
|
| [3] |
EHLMANN B L, ANDERSON F S, ANDREWS‐HANNA J, et al. The sustainability of habitability on terrestrial planets: insights, questions, and needed measurements from Mars for understanding the evolution of Earth‐like worlds[J]. Journal of Geophysical Research: Planets, 2016, 121(10): 1927-1961 doi: 10.1002/2016JE005134
|
| [4] |
BIBRING J P, LANGEVIN Y, MUSTARD J F, et al. Global mineralogical and aqueous Mars history derived from OMEGA/mars express data[J]. Science, 2006, 312(5772): 400-404 doi: 10.1126/science.1122659
|
| [5] |
CHEVRIER V, POULET F, BIBRING J P. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates[J]. Nature, 2007, 448(7149): 60-63 doi: 10.1038/nature05961
|
| [6] |
CARTER J, POULET F, BIBRING J P, et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view[J]. Journal of Geophysical Research: Planets, 2013, 118(4): 831-858 doi: 10.1029/2012JE004145
|
| [7] |
GOU Sheng, YUE Zongyu, DI Kaichang et al. Advances in aqueous minerals detection on Martian surface[J]. Journal of Remote Sensing, 2017, 21(4): 531-548 (芶盛, 岳宗玉, 邸凯昌, 等. 火星表面含水矿物探测进展[J]. 遥感学报, 2017, 21(4): 531-548
GOU Sheng, YUE Zongyu, DI Kaichang et al. Advances in aqueous minerals detection on Martian surface[J]. Journal of Remote Sensing, 2017, 21(4): 531-548
|
| [8] |
CARTER J, RIU L, POULET F, et al. A Mars Orbital Catalog of Aqueous Alteration Signatures (MOCAAS)[J]. Icarus, 2023, 389: 115164 doi: 10.1016/j.icarus.2022.115164
|
| [9] |
BIBRING J P, LANGEVIN Y, GENDRIN A, et al. Mars surface diversity as revealed by the OMEGA/Mars express observations[J]. Science, 2005, 307(5715): 1576-1581 doi: 10.1126/science.1108806
|
| [10] |
MURCHIE S, ARVIDSON R, BEDINI P, et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)[J]. Journal of Geophysical Research: Planets, 2007, 112(E5): E05S03
|
| [11] |
MUSTARD J, PARENTE M, DAS E, et al. Searching for needles[C]//Proceedings of the GSA Connects 2021. Portland, Oregon: GSA, 2021
|
| [12] |
BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6-36 doi: 10.1109/MGRS.2013.2244672
|
| [13] |
GHAMISI P, YOKOYA N, LI J, et al. Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 37-78 doi: 10.1109/MGRS.2017.2762087
|
| [14] |
KUMARI P, SOOR S, SHETTY A, et al. Mineral classification on Martian surface using CRISM hyperspectral data: a survey[J]. Journal of Applied Remote Sensing, 2023, 17(4): 041501
|
| [15] |
KE T, ZHONG Y F, SONG M, et al. Mineral detection based on hyperspectral remote sensing imagery on Mars: from detection methods to fine mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 218: 761-780 doi: 10.1016/j.isprsjprs.2024.09.020
|
| [16] |
WU Xing. Hyperspectral Target Detection for Hydrous Minerals on Mars[D]. Beijing: University of Chinese Academy of Sciences, 2020 (吴兴. 火星含水矿物高光谱目标探测算法研究[D]. 北京: 中国科学院大学, 2020
WU Xing. Hyperspectral Target Detection for Hydrous Minerals on Mars[D]. Beijing: University of Chinese Academy of Sciences, 2020
|
| [17] |
CHRISTENSEN P R, BANDFIELD J L, HAMILTON V E, et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results[J]. Journal of Geophysical Research: Planets, 2001, 106(E10): 23823-23871 doi: 10.1029/2000JE001370
|
| [18] |
CHRISTENSEN P R, JAKOSKY B M, KIEFFER H H, et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission[J]. Space Science Reviews, 2004, 110(1): 85-130
|
| [19] |
HE Z P, XU R, LI C L, et al. Mars Mineralogical Spectrometer (MMS) on the Tianwen-1 mission[J]. Space Science Reviews, 2021, 217(2): 27 doi: 10.1007/s11214-021-00804-z
|
| [20] |
SEELOS F P, SEELOS K D, MURCHIE S L, et al. The CRISM investigation in Mars orbit: overview, history, and delivered data products[J]. Icarus, 2024, 419: 115612 doi: 10.1016/j.icarus.2023.115612
|
| [21] |
TONG Qingxi, ZHANG Bing, ZHENG Lanfen. Hyperspectral Remote Sensing[M]. Beijing: Higher Education Press, 2006 (童庆禧, 张兵, 郑兰芬. 高光谱遥感——原理、技术与应用[M]. 北京: 高等教育出版社, 2006
TONG Qingxi, ZHANG Bing, ZHENG Lanfen. Hyperspectral Remote Sensing[M]. Beijing: Higher Education Press, 2006
|
| [22] |
CLARK R N, KING T V V, KLEJWA M, et al. High spectral resolution reflectance spectroscopy of minerals[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B8): 12653-12680 doi: 10.1029/JB095iB08p12653
|
| [23] |
YIN Haoan, TANG Hong, LI Xiongyao, et al. Occurrence and infrared absorption spectra of Martian water[J]. Chinese Journal of Space Science, 2024, 44(6): 1086-1105 (尹浩安, 唐红, 李雄耀, 等. 火星水的主要赋存状态及其红外光谱特征[J]. 空间科学学报, 2024, 44(6): 1086-1105 doi: 10.11728/cjss2024.06.2023-0118
YIN Haoan, TANG Hong, LI Xiongyao, et al. Occurrence and infrared absorption spectra of Martian water[J]. Chinese Journal of Space Science, 2024, 44(6): 1086-1105 doi: 10.11728/cjss2024.06.2023-0118
|
| [24] |
VIVIANO C E, SEELOS F P, MURCHIE S L, et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars[J]. Journal of Geophysical Research: Planets, 2014, 119(6): 1403-1431 doi: 10.1002/2014JE004627
|
| [25] |
CLARK R N, ROUSH T L. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 6329-6340 doi: 10.1029/JB089iB07p06329
|
| [26] |
PELKEY S, MUSTARD J, MURCHIE S, et al. CRISM multispectral summary products: parameterizing mineral diversity on Mars from reflectance[J]. Journal of Geophysical Research: Planets, 2007, 112(E8): E08S14
|
| [27] |
MUSTARD J F, MURCHIE S L, PELKEY S M, et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument[J]. Nature, 2008, 454(7202): 305-309 doi: 10.1038/nature07097
|
| [28] |
PAN L, EHLMANN B L, CARTER J, et al. The stratigraphy and history of Mars’ northern lowlands through mineralogy of impact craters: a comprehensive survey[J]. Journal of Geophysical Research: Planets, 2017, 122(9): 1824-1854 doi: 10.1002/2017JE005276
|
| [29] |
KEPP M, PAN L, FRYDENVANG J, et al. Orbital identification of widespread hydrated silica deposits in Gale crater[J]. Earth and Planetary Science Letters, 2024, 648: 119082 doi: 10.1016/j.jpgl.2024.119082
|
| [30] |
VAN RUITENBEEK F J A, BAKKER W H, VAN DER WERFF H M A, et al. Mapping the wavelength position of deepest absorption features to explore mineral diversity in hyperspectral images[J]. Planetary and Space Science, 2014, 101: 108-117 doi: 10.1016/j.pss.2014.06.009
|
| [31] |
SUNSHINE J M, PIETERS C M. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model[J]. Journal of Geophysical Research: Planets, 1993, 98(E5): 9075-9087 doi: 10.1029/93JE00677
|
| [32] |
BROWN A J. Spectral curve fitting for automatic hyperspectral data analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1601-1608 doi: 10.1109/TGRS.2006.870435
|
| [33] |
CLÉNET H, PINET P, DAYDOU Y, et al. A new systematic approach using the Modified Gaussian Model: insight for the characterization of chemical composition of olivines, pyroxenes and olivine–pyroxene mixtures[J]. Icarus, 2011, 213(1): 404-422 doi: 10.1016/j.icarus.2011.03.002
|
| [34] |
PARENTE M, MAKAREWICZ H D, BISHOP J L. Decomposition of mineral absorption bands using nonlinear least squares curve fitting: application to Martian meteorites and CRISM data[J]. Planetary and Space Science, 2011, 59(5/6): 423-442
|
| [35] |
SERVENTI G, CARLI C, ALTIERI F, et al. Spectral classification and MGM-based mineralogical characterization of hydrated phases: the Nili Fossae case, Mars[J]. Planetary and Space Science, 2021, 209: 105361 doi: 10.1016/j.pss.2021.105361
|
| [36] |
BANDFIELD J L, CHRISTENSEN P R, SMITH M D. Spectral data set factor analysis and end‐member recovery: application to analysis of Martian atmospheric particulates[J]. Journal of Geophysical Research: Planets, 2000, 105(E4): 9573-9587 doi: 10.1029/1999JE001094
|
| [37] |
THOMAS N H, BANDFIELD J L. Identification and refinement of martian surface mineralogy using factor analysis and target transformation of near-infrared spectroscopic data[J]. Icarus, 2017, 291: 124-135 doi: 10.1016/j.icarus.2017.03.001
|
| [38] |
LIN H L, TARNAS J D, MUSTARD J F, et al. Dynamic Aperture Factor Analysis/Target Transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data[J]. Icarus, 2021, 355: 114168 doi: 10.1016/j.icarus.2020.114168
|
| [39] |
TARNAS J D, MUSTARD J F, LIN H L, et al. Orbital identification of hydrated silica in Jezero crater, Mars[J]. Geophysical Research Letters, 2019, 46(22): 12771-12782 doi: 10.1029/2019GL085584
|
| [40] |
TARNAS J D, MUSTARD J F, WU X, et al. Successes and challenges of factor analysis/target transformation application to visible-to-near-infrared hyperspectral data[J]. Icarus, 2021, 365: 114402 doi: 10.1016/j.icarus.2021.114402
|
| [41] |
AHMAD M, SHABBIR S, ROY S K, et al. Hyperspectral image classification—Traditional to deep models: a survey for future prospects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 968-999 doi: 10.1109/JSTARS.2021.3133021
|
| [42] |
PLEBANI E, EHLMANN B L, LEASK E K, et al. A machine learning toolkit for CRISM image analysis[J]. Icarus, 2022, 376: 114849 doi: 10.1016/j.icarus.2021.114849
|
| [43] |
KUMARI P, SOOR S, SHETTY A, et al. A fully-automated framework for mineral identification on Martian surface using supervised learning models[J]. IEEE Access, 2023, 11: 13121-13137 doi: 10.1109/ACCESS.2023.3243061
|
| [44] |
KAMPS O M, HEWSON R D, VAN RUITENBEEK F J A, et al. Defining surface types of Mars using global CRISM summary product maps[J]. Journal of Geophysical Research: Planets, 2020, 125(8): e2019JE006337 doi: 10.1029/2019JE006337
|
| [45] |
ALLENDER E, STEPINSKI T F. Automatic, exploratory mineralogical mapping of CRISM imagery using summary product signatures[J]. Icarus, 2017, 281: 151-161 doi: 10.1016/j.icarus.2016.08.022
|
| [46] |
SARANATHAN A M, PARENTE M. Adversarial feature learning for improved mineral mapping of CRISM data[J]. Icarus, 2021, 355: 114107 doi: 10.1016/j.icarus.2020.114107
|
| [47] |
ZHANG Liangpei. Advance and future challenges in hyperspectral target detection[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1387-1394, 1400 (张良培. 高光谱目标探测的进展与前沿问题[J]. 武汉大学学报: 信息科学版, 2014, 39(12): 1387-1394, 1400
ZHANG Liangpei. Advance and future challenges in hyperspectral target detection[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1387-1394, 1400
|
| [48] |
FARRAND W H, BELL III J F, JOHNSON J R, et al. Visible and near‐infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity[J]. Journal of Geophysical Research: Planets, 2007, 112(E6): E06S02
|
| [49] |
WU X, ZHANG X, CEN Y. Multi-task joint sparse and low-rank representation target detection for hyperspectral image[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1756-1760 doi: 10.1109/LGRS.2019.2908196
|
| [50] |
WU X, MUSTARD J F, TARNAS J D, et al. Imaging Mars analog minerals’ reflectance spectra and testing mineral detection algorithms[J]. Icarus, 2021, 369: 114644 doi: 10.1016/j.icarus.2021.114644
|
| [51] |
WU X, ZHANG X, MUSTARD J, et al. Joint Hapke model and spatial adaptive sparse representation with iterative background purification for Martian serpentine detection[J]. Remote Sensing, 2021, 13(3): 500 doi: 10.3390/rs13030500
|
| [52] |
POULET F, MANGOLD N, LOIZEAU D, et al. Abundance of minerals in the phyllosilicate-rich units on Mars[J]. Astronomy :Times New Roman;">& Astrophysics, 2008, 487(2): L41-L44
|
| [53] |
BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379 doi: 10.1109/JSTARS.2012.2194696
|
| [54] |
SCHMIDT F, LEGENDRE M, LE MOUëLIC S. Minerals detection for hyperspectral images using adapted linear unmixing: LinMin[J]. Icarus, 2014, 237: 61-74 doi: 10.1016/j.icarus.2014.03.044
|
| [55] |
GILMORE M S, THOMPSON D R, ANDERSON L J, et al. Superpixel segmentation for analysis of hyperspectral data sets, with application to Compact Reconnaissance Imaging Spectrometer for Mars data, Moon Mineralogy Mapper data, and Ariadnes Chaos, Mars[J]. Journal of Geophysical Research: Planets, 2011, 116(E7): E07001
|
| [56] |
GOU S, YUE Z Y, DI K C, et al. Mineral abundances and different levels of alteration around Mawrth Vallis, Mars[J]. Geoscience Frontiers, 2015, 6(5): 741-758 doi: 10.1016/j.gsf.2014.09.004
|
| [57] |
KESHAVA N, MUSTARD J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57 doi: 10.1109/79.974727
|
| [58] |
HAPKE B. Bidirectional reflectance spectroscopy: 1. Theory[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 3039-3054 doi: 10.1029/JB086iB04p03039
|
| [59] |
SHKURATOV Y, STARUKHINA L, HOFFMANN H, et al. A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon[J]. Icarus, 1999, 137(2): 235-246 doi: 10.1006/icar.1998.6035
|
| [60] |
POULET F, CUZZI J N, CRUIKSHANK D P, et al. Comparison between the Shkuratov and Hapke scattering theories for solid planetary surfaces: application to the surface composition of two centaurs[J]. Icarus, 2002, 160(2): 313-324 doi: 10.1006/icar.2002.6970
|
| [61] |
POULET F, CARTER J, BISHOP J L, et al. Mineral abundances at the final four curiosity study sites and implications for their formation[J]. Icarus, 2014, 231: 65-76 doi: 10.1016/j.icarus.2013.11.023
|
| [62] |
LIU Y, GLOTCH T D, SCUDDER N A, et al. End‐member identification and spectral mixture analysis of CRISM hyperspectral data: a case study on southwest Melas Chasma, Mars[J]. Journal of Geophysical Research: Planets, 2016, 121(10): 2004-2036 doi: 10.1002/2016JE005028
|
| [63] |
LIU Y, STACHURSKI F, LIU Z H, et al. Quantitative assessment of water content and mineral abundances at Gale crater on Mars with orbital observations[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 637: A79
|
| [64] |
ZASTROW A M, GLOTCH T D. Distinct carbonate lithologies in Jezero crater, Mars[J]. Geophysical Research Letters, 2021, 48(9): e2020GL092365 doi: 10.1029/2020GL092365
|
| [65] |
LIN H L, ZHANG X. Retrieving the hydrous minerals on Mars by sparse unmixing and the Hapke model using MRO/CRISM data[J]. Icarus, 2017, 288: 160-171 doi: 10.1016/j.icarus.2017.01.019
|
| [66] |
LI S, MILLIKEN R E. Estimating the modal mineralogy of eucrite and diogenite meteorites using visible–near infrared reflectance spectroscopy[J]. Meteoritics :Times New Roman;">& Planetary Science, 2015, 50(11): 1821-1850
|
| [67] |
WYATT M B, MCSWEEN H Y JR. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars[J]. Nature, 2002, 417(6886): 263-266 doi: 10.1038/417263a
|
| [68] |
LAPOTRE M G A, EHLMANN B L, MINSON S E. A probabilistic approach to remote compositional analysis of planetary surfaces[J]. Journal of Geophysical Research: Planets, 2017, 122(5): 983-1009 doi: 10.1002/2016JE005248
|