Turn off MathJax
Article Contents
WANG Hujun, CHU Yingzhi, ZHANG Xiao, LIU Yi, XU Hang, ZHONG Yubin, LIU Weixin. Research Progress on Long-lived Survival Technology of Venus Lander (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1492-1505 doi: 10.11728/cjss2025.06.2024-0178
Citation: WANG Hujun, CHU Yingzhi, ZHANG Xiao, LIU Yi, XU Hang, ZHONG Yubin, LIU Weixin. Research Progress on Long-lived Survival Technology of Venus Lander (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1492-1505 doi: 10.11728/cjss2025.06.2024-0178

Research Progress on Long-lived Survival Technology of Venus Lander

doi: 10.11728/cjss2025.06.2024-0178 cstr: 32142.14.cjss.2024-0178
  • Received Date: 2024-12-03
  • Rev Recd Date: 2025-03-21
  • Available Online: 2025-03-21
  • Venus, as a major component of terrestrial planets, is of great scientific significance for exploration and research. Understanding Venus can enhance our knowledge of the formation and evolution of terrestrial planets, the development of Earth's habitability, and the strategies for searching habitable exoplanets. Recently, Venus exploration has witnessed a resurgence, with Europe, the US, Russia, and India planning new missions around 2030. However, its infernal surface conditions, a scorching 462°C, crushing 9.3 MPa pressure (equivalent to 900 m underwater on Earth), and corrosive CO2 atmosphere laden with sulfuric acid aerosols, which have limited prior missions to mere hours of operation, exemplified by the Soviet Venera 13’s 127-minute survival record. To address the need for long-duration Venus surface missions, this paper analyzes the challenges of lander long-life survival based on Venus’s environment, i.e., energy acquisition and environmental adaptation. It reviews the research progress in four areas: lightweight pressure-resistant structures, high-temperature electronics, power systems, and thermal control technology, while offering design recommendations. Lightweight pressure-resistant structures, represented by honeycomb structures, lattice structures, and composite materials, show promise in effectively reducing the lander’s weight while maintaining structural integrity. High-temperature electronics, based on materials like Silicon Carbide (SiC), can significantly enhance the performance and service life of electronic devices in extreme heat. Efficient energy systems, including radioisotope Stirling generators and high-temperature batteries, are expected to supply stable power to the lander and lessen the energy system’s demand on thermal control resources. In terms of thermal control technology, building on high-performance heat storage and insulation materials, employing high-temperature Stirling cooling or compression cooling techniques can effectively tackle the heat dissipation issues for landers in high-temperature settings. The design recommendations outlined in this paper aim to provide valuable references for potential future Venus lander exploration missions, aiding in the development of more advanced and durable lander systems capable of withstanding Venus’s challenging environment for extended periods.

     

  • loading
  • [1]
    ZHAO Yuyan, LIU Jianzhong, ZOU Yongliao, et al. Progress and future prospects of Venus exploration[J]. Acta Geologica Sinica, 2021, 95(9): 2703-2724 (赵宇鴳, 刘建忠, 邹永廖等. 金星探测研究进展与未来展望[J]. 地质学报, 2021, 95(9): 2703-2724

    ZHAO Yuyan, LIU Jianzhong, ZOU Yongliao, et al. Progress and future prospects of Venus exploration[J]. Acta Geologica Sinica, 2021, 95(9): 2703-2724
    [2]
    ZORZANO M P, OLSSON-FRANCIS K, DORAN P T, et al. The COSPAR planetary protection requirements for space missions to Venus[J]. Life Sciences in Space Research, 2023, 37: 18-24 doi: 10.1016/j.lssr.2023.02.001
    [3]
    GHAIL R C, HALL D, MASON P J, et al. VenSAR on EnVision: taking earth observation radar to Venus[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 64: 365-376
    [4]
    ZASOVA L V, GORINOV D A, EISMONT N A, et al. Venera-D: a design of an automatic space station for venus exploration[J]. Solar System Research, 2019, 53(7): 506-510 doi: 10.1134/S0038094619070244
    [5]
    HAN Lin, YANG Fan, FAN Weiwei, et al. Trends and strategic planning researches of venus exploration abroad[J]. Chinese Journal of Space Science, 2024, 44(5): 753-762 (韩淋, 杨帆, 范唯唯等. 国外金星探测发展态势及战略规划解析[J]. 空间科学学报, 2024, 44(5): 753-762 doi: 10.11728/cjss2024.05.2024-yg08

    HAN Lin, YANG Fan, FAN Weiwei, et al. Trends and strategic planning researches of venus exploration abroad[J]. Chinese Journal of Space Science, 2024, 44(5): 753-762 doi: 10.11728/cjss2024.05.2024-yg08
    [6]
    VEXAG. Roadmap for Venus exploration[EB/OL]. (2019-10-01)[2024-03-27]. https://www.lpi.usra.edu/vexag/documents/reports/VEXAG_Venus_Roadmap_2019.pdf
    [7]
    COLLETTE J P, ROCHUS P, PEYROU-LAUGA R, et al. Phase change material device for spacecraft thermal control[C]//Proceedings of the 62nd International Astronautical Congress. Cape Town, South Africa, 2011: 6020-6031
    [8]
    BIENSTOCK B J. Pioneer Venus and Galileo entry probe heritage[C]//Proceedings of the International Workshop Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Lisbon, Portugal: ESA Publications Division, 2004: 37-45
    [9]
    ABDRAKHIMOV A M, BASILEVSKY A T. Geology of the venera and vega landing-site regions[J]. Solar System Research, 2002, 36(2): 136-159 doi: 10.1023/A:1015222316518
    [10]
    ANDO H, IMAMURA T, TELLMANN S, et al. Thermal structure of the Venusian atmosphere from the sub-cloud region to the mesosphere as observed by radio occultation[J]. Scientific Reports, 2020, 10(1): 3448 doi: 10.1038/s41598-020-59278-8
    [11]
    GRANDIDIER J, KIRK A P, JAHELKA P, et al. Photovoltaic operation in the lower atmosphere and at the surface of Venus[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(6): 545-553 doi: 10.1002/pip.3214
    [12]
    TITOV D V, BULLOCK M A, CRISP D, et al. Radiation in the atmosphere of venus[J]. Washington Dc American Geophysical Union Geophysical Monograph, 2007, 176: 121-138
    [13]
    SINGH D. Venus nightside surface temperature[J]. Scientific Reports, 2019, 9(1): 1137 doi: 10.1038/s41598-018-38117-x
    [14]
    LANDIS G A, MELLOTT K C. Venus surface power and cooling systems[J]. Acta Astronautica, 2007, 61(11/12): 995-1001
    [15]
    DELITSKY M L, BAINES K H. Cloud chemistry on Venus: sulfuric acid reactions and supercooling in Venus liquid cloud droplets[J]. Planetary and Space Science, 2023, 237: 105750
    [16]
    KRASNOPOLSKY V A. Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45–75 km on Venus[J]. Icarus, 2015, 252: 327-333 doi: 10.1016/j.icarus.2015.01.024
    [17]
    LANDIS G A, HAAG E. Analysis of solar cell efficiency for venus atmosphere and surface missions[C]//Proceedings of the 11th International Energy Conversion Engineering Conference. San Jose: AIAA, 2013: 4028
    [18]
    GRANDIDIER J, KIRK A P, OSOWSKI M L, et al. Low-Intensity High-Temperature (LIHT) solar cells for venus atmosphere[J]. IEEE Journal of Photovoltaics, 2018, 8(6): 1621-1626 doi: 10.1109/JPHOTOV.2018.2871333
    [19]
    BERMUDEZ-GARCIA A, VOARINO P, RACCURT O. Environments, needs and opportunities for future space photovoltaic power generation: a review[J]. Applied Energy, 2021, 290(5): 116757
    [20]
    LANDIS G A. Power systems for Venus surface missions: a review[J]. Acta Astronautica, 2020, 187: 492-497
    [21]
    GLASS D E, JONES J P, SHEVADE A V, et al. High temperature primary battery for Venus surface missions[J]. Journal of Power Sources, 2019, 449: 227492
    [22]
    LUKCO D, SPRY D J, HARVEY R P, et al. Chemical analysis of materials exposed to Venus temperature and surface atmosphere[J]. Earth and Space Science, 2018, 5(7): 270-284 doi: 10.1029/2017EA000355
    [23]
    HUNTRESS W T JR, MAROV M Y. Soviet Robots in the Solar System[M]. New York: Springer, 2011
    [24]
    PAUKEN M, KOLAWA E, MANVI R, et al. Pressure vessel technology development[C]//Proceedings of the 4th International Planetary Probe Workshop. Pasadena, CA, USA: California Institute of Technology, 2006
    [25]
    YANG Rui, MA Yingjie. Status and prospect of key materials for deep submergence facilities[J]. Science and Technology Foresight, 2022, 1(2): 145-156 (杨锐, 马英杰. 深潜装备用关键材料现状与展望[J]. 前瞻科技, 2022, 1(2): 145-156

    YANG Rui, MA Yingjie. Status and prospect of key materials for deep submergence facilities[J]. Science and Technology Foresight, 2022, 1(2): 145-156
    [26]
    LUO Shan, LI Yongsheng, WANG Weibo. Development and prospects of non-metallic submersible pressure hull[J]. Chinese Journal of Ship Research, 2020, 15(4): 9-18 (罗珊, 李永胜, 王纬波. 非金属潜水器耐压壳发展概况及展望[J]. 中国舰船研究, 2020, 15(4): 9-18

    LUO Shan, LI Yongsheng, WANG Weibo. Development and prospects of non-metallic submersible pressure hull[J]. Chinese Journal of Ship Research, 2020, 15(4): 9-18
    [27]
    LUO Ningsheng, CAO Jianwu. Development status and prospects of high-temperature SOI technology[J]. Electronics :Times New Roman;">& Packaging, 2022, 22(12): 85-93 (罗宁胜, 曹建武. 高温SOI技术的发展现状和前景[J]. 电子与封装, 2022, 22(12): 85-93

    LUO Ningsheng, CAO Jianwu. Development status and prospects of high-temperature SOI technology[J]. Electronics & Packaging, 2022, 22(12): 85-93
    [28]
    PETROSYANTS K O, LEBEDEV S V, SAMBURSKY L M, et al. High temperature submicron SOI CMOS technology characterization for analog and digital applications up to 300°C[C]//Proceedings of the 2017 33rd Thermal Measurement, Modeling & Management Symposium. San Jose: IEEE, 2017: 229-234
    [29]
    NEUDECK P G, SPRY D J, KRASOWSKI M J, et al. Recent progress in extreme environment durable SiC JFET-R integrated circuit technology[C]//Proceedings of the IMAPS 2023 Joint Conferences. Albuquerque: International Microelectronics Assembly & Packaging Society, 2023
    [30]
    NEUDECK P G, SPRY D J, CHEN L Y, et al. Demonstration of 4H-SiC digital integrated circuits above 800°C[J]. IEEE Electron Device Letters, 2017, 38(8): 1082-1085 doi: 10.1109/LED.2017.2719280
    [31]
    NEUDECK P G, SPRY D J, KRASOWSKI M J, et al. Year-long 500°C operational demonstration of up-scaled 4H-SiC JFET integrated circuits[J]. Journal of Microelectronics and Electronic Packaging, 2018, 15(4): 163-170 doi: 10.4071/imaps.729648
    [32]
    SPRY D J, NEUDECK P G, LUKCO D, et al. Prolonged 500°C operation of 100+ Transistor silicon carbide integrated circuits[J]. Materials Science Forum, 2018, 924: 949-952 doi: 10.4028/www.scientific.net/MSF.924.949
    [33]
    KIM H, BAGHERZADEH J, DRESLINSKI R G. SiC processors for extreme high-temperature venus surface exploration[C]//Proceedings of the 2022 Design, Automation & Test in Europe Conference & Exhibition. Antwerp: IEEE, 2022: 406-411
    [34]
    TIAN Y, LANNI L, RUSU A, et al. Silicon carbide fully differential amplifier characterized up to 500°C[J]. IEEE Transactions on Electron Devices, 2016, 63(6): 2242-2247 doi: 10.1109/TED.2016.2549062
    [35]
    NEUDECK P G, MEREDITH R D, CHEN L , et al. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions[J]. AIP Advances, 2016, 6(12): 125119
    [36]
    NIU Changlei, LUO Zhifu, LEI Yingjun, et al. Advanced power source technology of deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7(1): 24-34 (牛厂磊, 罗志福, 雷英俊, 等. 深空探测先进电源技术综述[J]. 深空探测学报, 2020, 7(1): 24-34

    NIU Changlei, LUO Zhifu, LEI Yingjun, et al. Advanced power source technology of deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7(1): 24-34
    [37]
    GRANDIDIER J, GOGNA P K, ERRICO M, et al. Solar cell measurements at high temperature[C]//Proceedings of 2015 IEEE 42nd Photovoltaic Specialist Conference. New Orleans: IEEE, 2015: 1-3
    [38]
    PERL E E, SIMON J, FRIEDMAN D J, et al. (Al) GaInP/GaAs tandem solar cells for power conversion at elevated temperature and high concentration[J]. IEEE Journal of Photovoltaics, 2018, 8(2): 640-645 doi: 10.1109/JPHOTOV.2017.2783853
    [39]
    SALAZAR D, LANDIS G A, COLOZZA A J. Non-cooled power system for Venus lander[C]//Proceedings of the 12th International Energy Conversion Engineering Conference. Cleveland: American Institute of Aeronautics and Astronautics, 2014: 3459
    [40]
    MONTAGUE G T, BROWN G V, MORRISON C R, et al. High-temperature switched-reluctance electric motor[R]. Cleveland: NASA Tech Briefs, 2003
    [41]
    LORENZ R D. Surface winds on Venus: probability distribution from in-situ measurements[J]. Icarus, 2016, 264: 311-315 doi: 10.1016/j.icarus.2015.09.036
    [42]
    BENIGNO G, HOZA K, MOTIWALA S, et al. A wind-powered rover for a low-cost Venus mission[C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013: 586
    [43]
    KREMIC T, HUNTER G W. Long-Lived In-situ Solar System Explorer (LLISSE) potential contributions to solar system exploration[J]. Bulletin of the American Astronomical Society, 2021, 53(4): 151
    [44]
    SAUDER J, WILCOX B, CUTTS J. An Airborne Turbine for Power Generation on Venus[C]//Proceedings of the 15th Meeting of the Venus Exploration and Analysis Group (VEXAG). Maryland: Lunar and Planetary Institute, 2017, 15(2061): 8037
    [45]
    MASSET P, SCHOEFFERT S, POINSO J Y, et al. Retained molten salt electrolytes in thermal batteries[J]. Journal of Power Sources, 2005, 139(1/2): 356-365
    [46]
    LU X C, LEMMON J P, SPRENKLE V, et al. Sodium-beta alumina batteries: status and challenges[J]. JOM, 2010, 62(9): 31-36 doi: 10.1007/s11837-010-0132-5
    [47]
    MASSET P, SCHOEFFERT S, POINSO J Y, et al. LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries[J]. Journal of the Electrochemical Society, 2005, 152(2): A405 doi: 10.1149/1.1850861
    [48]
    LANDIS G A, HARRISON R. Batteries for Venus surface operation[J]. Journal of Propulsion and Power, 2010, 26(4): 649-654 doi: 10.2514/1.41886
    [49]
    LIN X R, SALARI M, ARAVA L M R, et al. High temperature electrical energy storage: advances, challenges, and frontiers[J]. Chemical Society Reviews, 2016, 45(21): 5848-5887 doi: 10.1039/C6CS00012F
    [50]
    MILLER T F, PAUL M V, OLESON S R. Combustion-based power source for Venus surface missions[J]. Acta Astronautica, 2016, 127: 197-208 doi: 10.1016/j.actaastro.2016.05.006
    [51]
    GRANDIDIER J, AKINS A, CRISP D, et al. Feasibility of power beaming through the Venus atmosphere[J]. Acta Astronautica, 2023, 211: 376-381 doi: 10.1016/j.actaastro.2023.06.042
    [52]
    LEE K L, TARAU C. 24 Hours consumable-based cooling system for venus lander[C]//Proceedings of the 49th International Conference on Environmental Systems. Boston: 49th International Conference on Environmental Systems, 2019
    [53]
    EKONOMOV A P, KSANFOMALITY L V. On the thermal protection systems of landers for venus exploration[J]. Solar System Research, 2018, 52(1): 37-43 doi: 10.1134/S0038094617060016
    [54]
    ANDERSON K R, GROSS T, MCNAMARA C, et al. Venus lander electronics payload thermal management using a multistage refrigeration system[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(3): 659-668 doi: 10.2514/1.T5286
    [55]
    TARAU C, ANDERSON W, PETERS C. Thermal management system for long-lived venus landers[C]//Proceedings of the 9th Annual International Energy Conversion Engineering Conference. San Diego: AIAA, 2011: 5643
    [56]
    DYSON R W, SCHMITZ P C, PENSWICK L B, et al. Long-lived venus lander conceptual design: how to keep it cool[C]//Proceedings of the 7th International Energy Conversion and Engineering Conference. Denver: American Institute of Aeronautics and Astronautics, 2009: 4631
    [57]
    FUGLESANG C, ZETTERLING C, WILSON C. Venus long-life surface package (VL2SP)[C]//Proceedings of the 68th International Astronautical Congress. Adelaide, Australia: Curran Associates, 2018: 3035-3043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article Views(775) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return