| Citation: | WANG Hujun, CHU Yingzhi, ZHANG Xiao, LIU Yi, XU Hang, ZHONG Yubin, LIU Weixin. Research Progress on Long-lived Survival Technology of Venus Lander (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1492-1505 doi: 10.11728/cjss2025.06.2024-0178 |
| [1] |
ZHAO Yuyan, LIU Jianzhong, ZOU Yongliao, et al. Progress and future prospects of Venus exploration[J]. Acta Geologica Sinica, 2021, 95(9): 2703-2724 (赵宇鴳, 刘建忠, 邹永廖等. 金星探测研究进展与未来展望[J]. 地质学报, 2021, 95(9): 2703-2724
ZHAO Yuyan, LIU Jianzhong, ZOU Yongliao, et al. Progress and future prospects of Venus exploration[J]. Acta Geologica Sinica, 2021, 95(9): 2703-2724
|
| [2] |
ZORZANO M P, OLSSON-FRANCIS K, DORAN P T, et al. The COSPAR planetary protection requirements for space missions to Venus[J]. Life Sciences in Space Research, 2023, 37: 18-24 doi: 10.1016/j.lssr.2023.02.001
|
| [3] |
GHAIL R C, HALL D, MASON P J, et al. VenSAR on EnVision: taking earth observation radar to Venus[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 64: 365-376
|
| [4] |
ZASOVA L V, GORINOV D A, EISMONT N A, et al. Venera-D: a design of an automatic space station for venus exploration[J]. Solar System Research, 2019, 53(7): 506-510 doi: 10.1134/S0038094619070244
|
| [5] |
HAN Lin, YANG Fan, FAN Weiwei, et al. Trends and strategic planning researches of venus exploration abroad[J]. Chinese Journal of Space Science, 2024, 44(5): 753-762 (韩淋, 杨帆, 范唯唯等. 国外金星探测发展态势及战略规划解析[J]. 空间科学学报, 2024, 44(5): 753-762 doi: 10.11728/cjss2024.05.2024-yg08
HAN Lin, YANG Fan, FAN Weiwei, et al. Trends and strategic planning researches of venus exploration abroad[J]. Chinese Journal of Space Science, 2024, 44(5): 753-762 doi: 10.11728/cjss2024.05.2024-yg08
|
| [6] |
VEXAG. Roadmap for Venus exploration[EB/OL]. (2019-10-01)[2024-03-27]. https://www.lpi.usra.edu/vexag/documents/reports/VEXAG_Venus_Roadmap_2019.pdf
|
| [7] |
COLLETTE J P, ROCHUS P, PEYROU-LAUGA R, et al. Phase change material device for spacecraft thermal control[C]//Proceedings of the 62nd International Astronautical Congress. Cape Town, South Africa, 2011: 6020-6031
|
| [8] |
BIENSTOCK B J. Pioneer Venus and Galileo entry probe heritage[C]//Proceedings of the International Workshop Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Lisbon, Portugal: ESA Publications Division, 2004: 37-45
|
| [9] |
ABDRAKHIMOV A M, BASILEVSKY A T. Geology of the venera and vega landing-site regions[J]. Solar System Research, 2002, 36(2): 136-159 doi: 10.1023/A:1015222316518
|
| [10] |
ANDO H, IMAMURA T, TELLMANN S, et al. Thermal structure of the Venusian atmosphere from the sub-cloud region to the mesosphere as observed by radio occultation[J]. Scientific Reports, 2020, 10(1): 3448 doi: 10.1038/s41598-020-59278-8
|
| [11] |
GRANDIDIER J, KIRK A P, JAHELKA P, et al. Photovoltaic operation in the lower atmosphere and at the surface of Venus[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(6): 545-553 doi: 10.1002/pip.3214
|
| [12] |
TITOV D V, BULLOCK M A, CRISP D, et al. Radiation in the atmosphere of venus[J]. Washington Dc American Geophysical Union Geophysical Monograph, 2007, 176: 121-138
|
| [13] |
SINGH D. Venus nightside surface temperature[J]. Scientific Reports, 2019, 9(1): 1137 doi: 10.1038/s41598-018-38117-x
|
| [14] |
LANDIS G A, MELLOTT K C. Venus surface power and cooling systems[J]. Acta Astronautica, 2007, 61(11/12): 995-1001
|
| [15] |
DELITSKY M L, BAINES K H. Cloud chemistry on Venus: sulfuric acid reactions and supercooling in Venus liquid cloud droplets[J]. Planetary and Space Science, 2023, 237: 105750
|
| [16] |
KRASNOPOLSKY V A. Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45–75 km on Venus[J]. Icarus, 2015, 252: 327-333 doi: 10.1016/j.icarus.2015.01.024
|
| [17] |
LANDIS G A, HAAG E. Analysis of solar cell efficiency for venus atmosphere and surface missions[C]//Proceedings of the 11th International Energy Conversion Engineering Conference. San Jose: AIAA, 2013: 4028
|
| [18] |
GRANDIDIER J, KIRK A P, OSOWSKI M L, et al. Low-Intensity High-Temperature (LIHT) solar cells for venus atmosphere[J]. IEEE Journal of Photovoltaics, 2018, 8(6): 1621-1626 doi: 10.1109/JPHOTOV.2018.2871333
|
| [19] |
BERMUDEZ-GARCIA A, VOARINO P, RACCURT O. Environments, needs and opportunities for future space photovoltaic power generation: a review[J]. Applied Energy, 2021, 290(5): 116757
|
| [20] |
LANDIS G A. Power systems for Venus surface missions: a review[J]. Acta Astronautica, 2020, 187: 492-497
|
| [21] |
GLASS D E, JONES J P, SHEVADE A V, et al. High temperature primary battery for Venus surface missions[J]. Journal of Power Sources, 2019, 449: 227492
|
| [22] |
LUKCO D, SPRY D J, HARVEY R P, et al. Chemical analysis of materials exposed to Venus temperature and surface atmosphere[J]. Earth and Space Science, 2018, 5(7): 270-284 doi: 10.1029/2017EA000355
|
| [23] |
HUNTRESS W T JR, MAROV M Y. Soviet Robots in the Solar System[M]. New York: Springer, 2011
|
| [24] |
PAUKEN M, KOLAWA E, MANVI R, et al. Pressure vessel technology development[C]//Proceedings of the 4th International Planetary Probe Workshop. Pasadena, CA, USA: California Institute of Technology, 2006
|
| [25] |
YANG Rui, MA Yingjie. Status and prospect of key materials for deep submergence facilities[J]. Science and Technology Foresight, 2022, 1(2): 145-156 (杨锐, 马英杰. 深潜装备用关键材料现状与展望[J]. 前瞻科技, 2022, 1(2): 145-156
YANG Rui, MA Yingjie. Status and prospect of key materials for deep submergence facilities[J]. Science and Technology Foresight, 2022, 1(2): 145-156
|
| [26] |
LUO Shan, LI Yongsheng, WANG Weibo. Development and prospects of non-metallic submersible pressure hull[J]. Chinese Journal of Ship Research, 2020, 15(4): 9-18 (罗珊, 李永胜, 王纬波. 非金属潜水器耐压壳发展概况及展望[J]. 中国舰船研究, 2020, 15(4): 9-18
LUO Shan, LI Yongsheng, WANG Weibo. Development and prospects of non-metallic submersible pressure hull[J]. Chinese Journal of Ship Research, 2020, 15(4): 9-18
|
| [27] |
LUO Ningsheng, CAO Jianwu. Development status and prospects of high-temperature SOI technology[J]. Electronics :Times New Roman;">& Packaging, 2022, 22(12): 85-93 (罗宁胜, 曹建武. 高温SOI技术的发展现状和前景[J]. 电子与封装, 2022, 22(12): 85-93
LUO Ningsheng, CAO Jianwu. Development status and prospects of high-temperature SOI technology[J]. Electronics & Packaging, 2022, 22(12): 85-93
|
| [28] |
PETROSYANTS K O, LEBEDEV S V, SAMBURSKY L M, et al. High temperature submicron SOI CMOS technology characterization for analog and digital applications up to 300°C[C]//Proceedings of the 2017 33rd Thermal Measurement, Modeling & Management Symposium. San Jose: IEEE, 2017: 229-234
|
| [29] |
NEUDECK P G, SPRY D J, KRASOWSKI M J, et al. Recent progress in extreme environment durable SiC JFET-R integrated circuit technology[C]//Proceedings of the IMAPS 2023 Joint Conferences. Albuquerque: International Microelectronics Assembly & Packaging Society, 2023
|
| [30] |
NEUDECK P G, SPRY D J, CHEN L Y, et al. Demonstration of 4H-SiC digital integrated circuits above 800°C[J]. IEEE Electron Device Letters, 2017, 38(8): 1082-1085 doi: 10.1109/LED.2017.2719280
|
| [31] |
NEUDECK P G, SPRY D J, KRASOWSKI M J, et al. Year-long 500°C operational demonstration of up-scaled 4H-SiC JFET integrated circuits[J]. Journal of Microelectronics and Electronic Packaging, 2018, 15(4): 163-170 doi: 10.4071/imaps.729648
|
| [32] |
SPRY D J, NEUDECK P G, LUKCO D, et al. Prolonged 500°C operation of 100+ Transistor silicon carbide integrated circuits[J]. Materials Science Forum, 2018, 924: 949-952 doi: 10.4028/www.scientific.net/MSF.924.949
|
| [33] |
KIM H, BAGHERZADEH J, DRESLINSKI R G. SiC processors for extreme high-temperature venus surface exploration[C]//Proceedings of the 2022 Design, Automation & Test in Europe Conference & Exhibition. Antwerp: IEEE, 2022: 406-411
|
| [34] |
TIAN Y, LANNI L, RUSU A, et al. Silicon carbide fully differential amplifier characterized up to 500°C[J]. IEEE Transactions on Electron Devices, 2016, 63(6): 2242-2247 doi: 10.1109/TED.2016.2549062
|
| [35] |
NEUDECK P G, MEREDITH R D, CHEN L , et al. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions[J]. AIP Advances, 2016, 6(12): 125119
|
| [36] |
NIU Changlei, LUO Zhifu, LEI Yingjun, et al. Advanced power source technology of deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7(1): 24-34 (牛厂磊, 罗志福, 雷英俊, 等. 深空探测先进电源技术综述[J]. 深空探测学报, 2020, 7(1): 24-34
NIU Changlei, LUO Zhifu, LEI Yingjun, et al. Advanced power source technology of deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7(1): 24-34
|
| [37] |
GRANDIDIER J, GOGNA P K, ERRICO M, et al. Solar cell measurements at high temperature[C]//Proceedings of 2015 IEEE 42nd Photovoltaic Specialist Conference. New Orleans: IEEE, 2015: 1-3
|
| [38] |
PERL E E, SIMON J, FRIEDMAN D J, et al. (Al) GaInP/GaAs tandem solar cells for power conversion at elevated temperature and high concentration[J]. IEEE Journal of Photovoltaics, 2018, 8(2): 640-645 doi: 10.1109/JPHOTOV.2017.2783853
|
| [39] |
SALAZAR D, LANDIS G A, COLOZZA A J. Non-cooled power system for Venus lander[C]//Proceedings of the 12th International Energy Conversion Engineering Conference. Cleveland: American Institute of Aeronautics and Astronautics, 2014: 3459
|
| [40] |
MONTAGUE G T, BROWN G V, MORRISON C R, et al. High-temperature switched-reluctance electric motor[R]. Cleveland: NASA Tech Briefs, 2003
|
| [41] |
LORENZ R D. Surface winds on Venus: probability distribution from in-situ measurements[J]. Icarus, 2016, 264: 311-315 doi: 10.1016/j.icarus.2015.09.036
|
| [42] |
BENIGNO G, HOZA K, MOTIWALA S, et al. A wind-powered rover for a low-cost Venus mission[C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013: 586
|
| [43] |
KREMIC T, HUNTER G W. Long-Lived In-situ Solar System Explorer (LLISSE) potential contributions to solar system exploration[J]. Bulletin of the American Astronomical Society, 2021, 53(4): 151
|
| [44] |
SAUDER J, WILCOX B, CUTTS J. An Airborne Turbine for Power Generation on Venus[C]//Proceedings of the 15th Meeting of the Venus Exploration and Analysis Group (VEXAG). Maryland: Lunar and Planetary Institute, 2017, 15(2061): 8037
|
| [45] |
MASSET P, SCHOEFFERT S, POINSO J Y, et al. Retained molten salt electrolytes in thermal batteries[J]. Journal of Power Sources, 2005, 139(1/2): 356-365
|
| [46] |
LU X C, LEMMON J P, SPRENKLE V, et al. Sodium-beta alumina batteries: status and challenges[J]. JOM, 2010, 62(9): 31-36 doi: 10.1007/s11837-010-0132-5
|
| [47] |
MASSET P, SCHOEFFERT S, POINSO J Y, et al. LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries[J]. Journal of the Electrochemical Society, 2005, 152(2): A405 doi: 10.1149/1.1850861
|
| [48] |
LANDIS G A, HARRISON R. Batteries for Venus surface operation[J]. Journal of Propulsion and Power, 2010, 26(4): 649-654 doi: 10.2514/1.41886
|
| [49] |
LIN X R, SALARI M, ARAVA L M R, et al. High temperature electrical energy storage: advances, challenges, and frontiers[J]. Chemical Society Reviews, 2016, 45(21): 5848-5887 doi: 10.1039/C6CS00012F
|
| [50] |
MILLER T F, PAUL M V, OLESON S R. Combustion-based power source for Venus surface missions[J]. Acta Astronautica, 2016, 127: 197-208 doi: 10.1016/j.actaastro.2016.05.006
|
| [51] |
GRANDIDIER J, AKINS A, CRISP D, et al. Feasibility of power beaming through the Venus atmosphere[J]. Acta Astronautica, 2023, 211: 376-381 doi: 10.1016/j.actaastro.2023.06.042
|
| [52] |
LEE K L, TARAU C. 24 Hours consumable-based cooling system for venus lander[C]//Proceedings of the 49th International Conference on Environmental Systems. Boston: 49th International Conference on Environmental Systems, 2019
|
| [53] |
EKONOMOV A P, KSANFOMALITY L V. On the thermal protection systems of landers for venus exploration[J]. Solar System Research, 2018, 52(1): 37-43 doi: 10.1134/S0038094617060016
|
| [54] |
ANDERSON K R, GROSS T, MCNAMARA C, et al. Venus lander electronics payload thermal management using a multistage refrigeration system[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(3): 659-668 doi: 10.2514/1.T5286
|
| [55] |
TARAU C, ANDERSON W, PETERS C. Thermal management system for long-lived venus landers[C]//Proceedings of the 9th Annual International Energy Conversion Engineering Conference. San Diego: AIAA, 2011: 5643
|
| [56] |
DYSON R W, SCHMITZ P C, PENSWICK L B, et al. Long-lived venus lander conceptual design: how to keep it cool[C]//Proceedings of the 7th International Energy Conversion and Engineering Conference. Denver: American Institute of Aeronautics and Astronautics, 2009: 4631
|
| [57] |
FUGLESANG C, ZETTERLING C, WILSON C. Venus long-life surface package (VL2SP)[C]//Proceedings of the 68th International Astronautical Congress. Adelaide, Australia: Curran Associates, 2018: 3035-3043
|