Turn off MathJax
Article Contents
LI Rongwang, LI Hui, SHU Peng, LI Yuqiang. Research Progress on Estimating Space Objects Characteristics Using Ground-based Observation Data (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1629-1643 doi: 10.11728/cjss2025.06.2024-0181
Citation: LI Rongwang, LI Hui, SHU Peng, LI Yuqiang. Research Progress on Estimating Space Objects Characteristics Using Ground-based Observation Data (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1629-1643 doi: 10.11728/cjss2025.06.2024-0181

Research Progress on Estimating Space Objects Characteristics Using Ground-based Observation Data

doi: 10.11728/cjss2025.06.2024-0181 cstr: 32142.14.cjss.2024-0181
  • Received Date: 2024-12-11
  • Rev Recd Date: 2025-06-20
  • Available Online: 2025-07-02
  • With the rapid increase in space activities, the proliferation of space debris from space objects’ breakup and collisions poses catastrophic risks to orbital operations. Consequently, the monitoring and characterization of space objects—including their attitude, shape, and material properties—have become critical for target identification, collision avoidance, and active debris removal. This study systematically reviews relevant technical papers from recent proceedings of the AMOS Conference, a key academic forum in space situational awareness. The analysis encompasses ground-based observational data applications in space object characterization, attitude estimation, shape reconstruction, attitude evolution, and machine learning-assisted decision-making. These methodologies provide a comprehensive toolkit for the integrated analysis of space objects, offering valuable insights for future advancements in characterization technologies. Against the current situation and trend of increasingly abundant data related to characteristic estimation and increasingly mature propagation algorithms, this paper proposes a new idea that China should establish a systematic space target characteristic estimation mechanism.

     

  • loading
  • [1]
    FURFARO R, LINARES R, REDDY V. Shape identification of space objects via light curve inversion using deep learning models[C]//2019 Advanced Maui Optical and Space Surveillance Technologies Conference. Wailea, Maui, Hawaii: Maui Economic Development Board, 2019
    [2]
    ZHANG H L, WANG J, ZHANG Y Z, et al. Review of artificial intelligence applications in astronomical data processing[J]. Astronomical Techniques and Instruments, 2024, 1(1): 1-15 doi: 10.61977/ati2024001
    [3]
    GOU Ruixin, DU Xiaoping, LIU Hao. Advances in attitude inversion of space object based on photometric data[J]. Laser :Times New Roman;">& Optoelectronics Progress, 2016, 53(10): 9-18 (苟瑞新, 杜小平, 刘浩. 光度数据反演空间目标姿态的研究进展[J]. 激光与光电子学进展, 2016, 53(10): 9-18

    GOU Ruixin, DU Xiaoping, LIU Hao. Advances in attitude inversion of space object based on photometric data[J]. Laser & Optoelectronics Progress, 2016, 53(10): 9-18
    [4]
    WANG Yang, DU Xiaoping, FAN Chunlin. Progress of light curve inversion technology for resident space object characteristics[J]. Chinese Science Bulletin, 2017, 62(15): 1578-1590 (王阳, 杜小平, 范椿林. 地基光度曲线反演空间目标特征技术研究进展[J]. 科学通报, 2017, 62(15): 1578-1590 doi: 10.1360/N972016-01082

    WANG Yang, DU Xiaoping, FAN Chunlin. Progress of light curve inversion technology for resident space object characteristics[J]. Chinese Science Bulletin, 2017, 62(15): 1578-1590 doi: 10.1360/N972016-01082
    [5]
    MA Baolin, ZHU Xuyu, XIONG Chengkang. Development overview of foreign space situation awareness system[J]. Tactical Missile Technology, 2025(1): 60-66,74 (马宝林, 朱旭宇, 熊承康. 国外太空态势感知系统发展综述[J]. 战术导弹技术, 2025(1): 60-66,74

    MA Baolin, ZHU Xuyu, XIONG Chengkang. Development overview of foreign space situation awareness system[J]. Tactical Missile Technology, 2025(1): 60-66,74
    [6]
    LAMBERT J V, KISSELL K E. The early development of satellite characterization capabilities at the air force laboratories[C]//Advanced Maui Optical and Space Surveillance Technologies Conference. Wailea, Maui, Hawaii: Maui Economic Development Board, 2006
    [7]
    RUSH K A, YOST M, SMITH L, et al. An application of the unscented Kalman filter for spacecraft attitude estimation on real and simulated light curve data[C]//21st Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2020
    [8]
    BLACKETER L D J. Angular velocity vector determination of spacecraft in flat-spin attitude states[C]//23rd Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2022
    [9]
    GALLEGO Á, DE ANDRÉS A, PAULETE C, et al. RSO characterization and attitude estimation with data fusion and advanced data simulation[C]//24th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2023
    [10]
    CLARK R, DAVE S, WAWROW J, et al. Performance of parameterization algorithms for resident space Object (RSO) attitude estimates[C]//21st Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2020
    [11]
    BURTON A, FRUEH C. Fast light curve inversion for regular and tumbling attitude motion[C]//24th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2023
    [12]
    BADURA G P, VALENTA C R. Physics-guided machine learning for satellite spin property estimation from light curves[C]//24th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2023
    [13]
    HROBÁR T, ŠILHA J, ZIGO M, et al. Attitude determination of cylindrical rocket bodies by using simultaneous bistatic photometric measurements[C]//2023 Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2023
    [14]
    CAMPBELL T, FURFARO R, REDDY V, et al. Bayesian approach to light curve inversion of 2020 SO[J]. The Journal of the Astronautical Sciences, 2022, 69(1): 95-119 doi: 10.1007/s40295-021-00301-z
    [15]
    Campbell T, Battle A, Gray B, et al. Spin axis and physical property inversion of moon-impactor Chang’e 5-t1 rocket body[C]//24th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2023
    [16]
    ŠILHA J, SCHILDKNECHT T, PITTET J N, et al. Comparison of ENVISAT’s attitude simulation and real optical and SLR observations in order to refine the satellite attitude model[C]//17th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2016
    [17]
    LIPS T, KANZLER R, BRESLAU A, et al. Debris attitude motion measurements and modeling - observation vs. simulation[C]//18th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2017
    [18]
    POLO M C, ABAY R, GEHLY S, et al. Attitude detection of buccaneer RMM cubesat through experimental and simulated light curves in combination with telemetry data[C]//19th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2018
    [19]
    BENSON C J, NAUDET C J, SCHEERES D J, et al. Radar and optical study of defunct GEO satellites[C]//21st Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2020
    [20]
    BENSON C J, NAUDET C J, SCHEERES D J, et al. Radar-derived spin states of defunct GEO satellites and rocket bodies[C]//22nd Advanced Maui Optical and Space Surveillance Technologies Conference, 2021. Maui, Hawaii: Maui Economic Development Board, 2021
    [21]
    BENSON C J, NAUDET C J, SCHEERES D J, et al. Radar and optical study of defunct geosynchronous satellites[J]. The Journal of the Astronautical Sciences, 2021, 68(3): 728-749 doi: 10.1007/s40295-021-00266-z
    [22]
    WATANABE K, HANADA T, FUJITA K. Dynamics observation of space objects using adaptive optics simulation and light curve analysis[C]//18th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2017
    [23]
    SEITZER P, SCHACHTER J H, SZCZERBA M, et al. Optical tracking and attitude determination of LEO CubeSats with LEDs: a balloon demonstration[C]//19th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2018
    [24]
    SANTONI F, SEITZER P, CARDONA T, et al. Optical tracking and orbit determination performance of self-illuminated small spacecraft: LEDSAT (LED-based SATellite)[J]. Advances in Space Research, 2018, 62(12): 3318-3334 doi: 10.1016/j.asr.2018.08.018
    [25]
    BAZIK M, FLEWELLING B, MAJJI M, et al. Bayesian inference of spacecraft pose using particle filtering[C]//19th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, Inc. , 2018
    [26]
    ARAKAWA R, MATSUSHITA Y, HANADA T, et al. Attitude estimation of space objects using imaging observations and deep learning[C]//20th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2019
    [27]
    LUCAS J, KYONO T, WERTH M, et al. Estimating satellite orientation through turbulence with deep learning[C]//21st Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2020
    [28]
    OKKELBERG K, LUCAS J, KYONO T, et al. Self-supervised auxiliary task learning for estimating satellite orientation[C]//22nd Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2021
    [29]
    KOBAYASHI D, BURTON A, FRUEH C. AI-assisted near-field monocular monostatic pose estimation of spacecraft[C]//24th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2023
    [30]
    AMATO D, FURFARO R, ROSENGREN A J, et al. Attitude propagation of resident space objects with recurrent neural networks[C]//19th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2018
    [31]
    PHELPS M, GAZAK J Z, SWINDLE T, et al. Inferring space object orientation with spectroscopy and convolutional networks[C]//22nd Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2021
    [32]
    PHELPS M, SWINDLE T, GAZAK J Z, et al. Improving spectral-based estimation of space object orientation[C]//23rd Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2022
    [33]
    ANTOLIN J, YU Z X, PRASAD S. Optical estimation of the 3d shape of a solar illuminated, reflecting satellite surface[C]//17th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2016
    [34]
    MCMAHON J W, SCHEERES D J. Shape estimation from lightcurves including constraints from orbit determination[C]//17th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2016
    [35]
    FAN S, FRIEDMAN A, FRUEH C. Satellite shape recovery from light curves with noise[C]//20th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2019
    [36]
    CABRERA D V, UTZMANN J, FÖRSTNER R. Inversion of the shape of space debris from non-resolved optical measurements within SPOOK[C]//22nd Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2021
    [37]
    IKEDA N, NISHIMURA T, IWAHORI T, et al. Shape and orbit estimation techniques for space debris observation using the middle and upper atmosphere radar (MU radar)[C]//18th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2017
    [38]
    JIA B, PHAM K D, BLASCH E, et al. Space object classification using fused features of time series data[C]//18th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2017
    [39]
    MCQUAID I, MERKLE L D, BORGHETTI B, et al. Space object identification using deep neural networks[C]//19th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2018
    [40]
    FURFARO R, LINARES R, REDDY V. Space objects classification via light-curve measurements: deep convolutional neural networks and model-based transfer learning[C]//19th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2018
    [41]
    LINARES R, FURFARO R, REDDY V. Space objects classification via light-curve measurements using deep convolutional neural networks[J]. The Journal of the Astronautical Sciences, 2020, 67(3): 1063-1091 doi: 10.1007/s40295-019-00208-w
    [42]
    BADURA G, VALENTA C R, GUNTER B. Convolutional neural networks for inference of space object attitude status[C]//21st Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2020
    [43]
    BADURA G P, VALENTA C R, GUNTER B. Convolutional neural networks for inference of space object attitude status[J]. The Journal of the Astronautical Sciences, 2022, 69(2): 593-626 doi: 10.1007/s40295-022-00309-z
    [44]
    ABERCROMBIE M D, CALEF B, NADERI S. Light curve analysis of deep space objects in complex rotation states[C]//22nd Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2021
    [45]
    KERR E, PETERSEN E G, TALON P, et al. Using AI to analyse light curves for GEO object characterisation[C]//22nd Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2021
    [46]
    POLO M C, ALENIN A, VAUGHN I, et al. GEO satellite characterization through polarimetry using simultaneous observations from nearby optical sensors[C]//17th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2016
    [47]
    PEARCE E C, FORD H A, SCHILDKNECHT T, et al. Rapid characterization of geosynchronous space debris with 5-color near-IR photometry[C]//18th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2017
    [48]
    PEARCE E C, KRANTZ H, BLOCK A, et al. Multicolor and spectral characterization of space objects in the near-IR[C]//21st Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2020
    [49]
    CORDELLI E, SCHLATTER P, SCHILDKNECHT T. Simultaneous multi-filter photometric characterization of space debris at the Swiss optical ground station and geodynamics observatory zimmerwald[C]//19th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2018
    [50]
    BENSON C J, SCHEERES D J, RYAN W H, et al. Rotation state evolution of retired geosynchronous satellites[C]//18th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2017
    [51]
    SAKAMOTO R, SCHEERES D J. Modeling energy dissipation and deformation in a tumbling defunct satellite using a finite element method[C]//20th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2019
    [52]
    SPURBECK J, JAH M K, KUCHARSKI D, et al. Satellite characterization, classification, and operational assessment via the exploitation of remote photoacoustic signatures[C]//19th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2018
    [53]
    FURFARO R, LINARES R, GAYLOR D, et al. Resident space object characterization and behavior understanding via machine learning and ontology-based Bayesian networks[C]//17th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2016
    [54]
    KELLY K G. Integrating machine learning into space operations[C]//18th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2017
    [55]
    RICHMOND D, SPOTO G. Comparison of phenomenology for satellite characterization[C]//16th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2016
    [56]
    RICHMOND D, BRENNAN J. Satellite characterization data collection and analysis[C]//18th Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, Hawaii: Maui Economic Development Board, 2017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article Views(676) PDF Downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return