| Citation: | LI Xinze, CAI Yujia, YU Qiang. Segmentation Algorithm of X-ray Microstructure Image of Na6Mo11O36 Material (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1532-1541 doi: 10.11728/cjss2025.06.2024-0185 |
| [1] |
WANG Y, LI S, LIU Z, et al. Anisotropy-dependent seaweed growth during directional solidification of Al-4.5%Cu single crystal[J]. Scripta Materialia, 2020, 186: 121-126 doi: 10.1016/j.scriptamat.2020.05.006
|
| [2] |
AGHALARI M, AGHAGOLZADEH A, EZOJI M. Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks[J]. Biomedical Signal Processing and Control, 2021, 69(6): 102841
|
| [3] |
WANG E K, CHEN C-M, HASSAN M M, et al. A deep learning based medical image segmentation technique in Internet-of-Medical-Things domain[J]. Future Generation Computer Systems, 2020, 108: 135-144 doi: 10.1016/j.future.2020.02.054
|
| [4] |
HUANG H, LIN L, TONG R, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]// 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE, 2020: 1055-1059
|
| [5] |
SONG Y, QU Z, LIAO H, et al. Material twins generation of woven polymer composites based on ResL-U-Net convolutional neural networks[J]. Composite Structures, 2023, 307: 116672 doi: 10.1016/j.compstruct.2023.116672
|
| [6] |
GUAN Y, PANG Z, SUN H, et al. Material strain image segmentation algorithm based on improved UNET network; proceedings of the 9th International Symposium on Test Automation & Instrumentation (ISTAI 2022), F 11-13 Nov. 2022, 2022 [C]
|
| [7] |
SHI P, DUAN M M, YANG L F, et al. An improved U-Net image segmentation method and its application for metallic grain size statistics[J]. MATERIALS, 2022, 15(13)
|
| [8] |
STUCKNER J, HARDER B, SMITH T M. Microstructure segmentation with deep learning encoders pre-trained on a large microscopy dataset[J]. NPJ Computational Materials, 2022, 8(1): 200 doi: 10.1038/s41524-022-00878-5
|
| [9] |
IBTEHAZ N, RAHMAN M S. MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2019, 121: 74-87
|
| [10] |
GAO WEIZE, CHEN SHANXIONG, MO BOFENG, et al. R-UNet++: a local segmentation network for the classification of oracle bone materials[J]. Journal of Computer-Aided Design :Times New Roman;">& Computer Graphics, 2022, 34(3): 415-424
|
| [11] |
HIRABAYASHI Y, IGA H, OGAWA H, et al. Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials[J]. NPJ Computational Materials, 2024, 10(1): 46 doi: 10.1038/s41524-024-01226-5
|
| [12] |
HORWATH J P, ZAKHAROV D N, MéGRET R, et al. Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images[J]. NPJ Computational Materials, 2020, 6(1): 108 doi: 10.1038/s41524-020-00363-x
|
| [13] |
YANG B, WU M, TEIZER W. Modified UNet++ with attention gate for graphene identification by optical microscopy[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2022, 195: 246-252
|
| [14] |
LIU P, SONG Y, CHAI M, et al. Swin–UNet++: a nested swin transformer architecture for location identification and morphology segmentation of dimples on 2.25Cr1Mo0.25V fractured surface[J]. Materials, 2021, 14(24): 7504 doi: 10.3390/ma14247504
|
| [15] |
SHU K Y, CHEN Z X, ZHU B, et al. Unsupervised Segmentation for Microstructure Identification of High Strength Steel with Superpixel Segmentation and Texture Feature Clustering; proceedings of the Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity, Cham, F 2024//, 2024 [C]. Springer Nature Switzerland
|
| [16] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[J]. Springer, Cham, 2015. DOI: 10.1007/978-3-662-54345-0_3
|
| [17] |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: a nested U-Net architecture for medical image segmentation[J]. 2018. DOI: 10.1007/978-3-030-00889-5_1
|
| [18] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation; proceedings of the medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, F, 2015 [C]. Springer
|
| [19] |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. [C]//proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Cham, F 2018. Springer International Publishing. DOI: 10.1007/978-3-030-00889-5_1
|
| [20] |
LOU A, GUAN S, LOEW M H. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[J]. Proceedings of SPIE, 2021, 11596(000). DOI: 10.1117/12.2582338
|
| [21] |
HUANG H, LIN L, TONG R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[J]. arXiv, 2020. DOI: 10.1109/ICASSP40776.2020.9053405
|
| [22] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211 doi: 10.1038/s41592-020-01008-z
|
| [23] |
LOU A, GUAN S, LOEW M. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[C]//Image Processing. SPIE, 2021. DOI: 10.1117/12.2582338
|
| [24] |
HUANG H, LIN L, TONG R, et al. Unet 3+: a full-scale connected unet for medical image segmentation[J]. arXiv, 2020. DOI: 10.1109/ICASSP40776.2020.9053405
|