Turn off MathJax
Article Contents
XU Yue, YANG Yanyan, WANG Jie, ZEREN Zhima. Comparison of Geomagnetic Models with Different Spatio-temporal Resolutions and Measured Data from Geomagnetic Stations (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1425-1438 doi: 10.11728/cjss2025.06.2025-0001
Citation: XU Yue, YANG Yanyan, WANG Jie, ZEREN Zhima. Comparison of Geomagnetic Models with Different Spatio-temporal Resolutions and Measured Data from Geomagnetic Stations (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1425-1438 doi: 10.11728/cjss2025.06.2025-0001

Comparison of Geomagnetic Models with Different Spatio-temporal Resolutions and Measured Data from Geomagnetic Stations

doi: 10.11728/cjss2025.06.2025-0001 cstr: 32142.14.cjss.2025-0001
  • Received Date: 2025-01-01
  • Rev Recd Date: 2025-05-13
  • Available Online: 2025-05-15
  • This study focuses on four INTERMAGNET geomagnetic stations located in the Arctic region and the South Atlantic Anomaly regions, where rapid geomagnetic changes have been observed in recent years. Utilizing two global geomagnetic field models with different spatial and temporal resolutions, the International Geomagnetic Reference Field (IGRF) model and the Swarm model, a multi-field source model that offers the highest spatiotemporal resolution currently available in China. The influence of model spatial resolution and update cycles on observatory measurements is quantitatively assessed. The findings are as follows. In regions without significant lithospheric magnetic anomalies, the IGRF and Swarm models yield relatively consistent results. However, for regions with more prominent lithospheric magnetic anomalies, the Swarm model with higher spatial resolution provides better agreement with the measurements. While the IGRF model showed significant temporal drift (often exceeding 100 nT) against station measurements during its five-year non-update period (from 2016 to 2020), the Swarm model exhibited no such drift. The magnitude of the IGRF drift varied regionally, reflecting the heterogeneity of global geomagnetic field variations. These results highlight the need to shorten the update interval for core field models during periods of rapid geomagnetic change. Statistical analysis from 120 global INTERMAGNET (International Real-time Magnetic Observatory Network) stations further confirms that, within the IGRF’s five-year update cycle, the Swarm model exhibits smaller mean and median absolute deviation compared to the IGRF model. The higher spatiotemporal resolution of the Swarm model yields results that are more consistent with observations and thus offers a more accurate representation of the geomagnetic field. This study provides a valuable basis and reference for the application of global geomagnetic models.

     

  • loading
  • [1]
    ALKEN P, THÉBAULT E, BEGGAN C D, et al. International geomagnetic reference field: the thirteenth generation[J]. Earth, Planets and Space, 2020, 73(1): 49
    [2]
    CHULLIAT A, ALKEN P, NAIR M, et al. The US/UK World Magnetic Model for 2020-2025: Technical Report[R]. Boulder: National Centers for Environmental Information, NOAA, 2020
    [3]
    MAUS S, YIN F, LÜHR H, et al. Resolution of direction of oceanic magnetic lineations by the sixth‐generation lithospheric magnetic field model from CHAMP satellite magnetic measurements[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07021
    [4]
    OLSEN N, RAVAT D, FINLAY C C, et al. LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations[J]. Geophysical Journal International, 2017, 211(3): 1461-1477 doi: 10.1093/gji/ggx381
    [5]
    THÉBAULT E, HULOT G, LANGLAIS B, et al. A spherical harmonic model of Earth’s lithospheric magnetic field up to degree 1050[J]. Geophysical Research Letters, 2021, 48(21): e2021gl095147 doi: 10.1029/2021GL095147
    [6]
    CHULLIAT A, VIGNERON P, HULOT G. First results from the swarm dedicated ionospheric field inversion chain[J]. Earth, Planets and Space, 2016, 68(1): 104. doi: 10.1186/s40623-016-0481-6
    [7]
    LAUNDAL K M, FINLAY C C, OLSEN N, et al. Solar wind and seasonal influence on ionospheric currents from swarm and champ measurements[J]. Journal of Geophysical Research: Space Physics, 2018, 123(5): 4402-4429 doi: 10.1029/2018JA025387
    [8]
    EGBERT G D, BENNETT A F, FOREMAN M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J]. Journal of Geophysical Research Atmospheres, 1994, 99(C12): 821-852
    [9]
    TYLER R H, MAUS S, LÜHR H. Satellite observations of magnetic fields due to ocean tidal flow[J]. Science, 2003, 299(5604): 239-241 doi: 10.1126/science.1078074
    [10]
    LESUR V, WARDINSKI I, HAMOUDI M, et al. The second generation of the GFZ reference internal magnetic model: GRIMM-2[J]. Earth, Planets and Space, 2010, 62(10): 765-773 doi: 10.5047/eps.2010.07.007
    [11]
    MAUS S, ROTHER M, STOLLE C, et al. Third generation of the Potsdam Magnetic Model of the Earth (POMME)[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(7): Q07008
    [12]
    OLSEN N, LÜHR H, SABAKA T J, et al. CHAOS—a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data[J]. Geophysical Journal International, 2006, 166(1): 67-75 doi: 10.1111/j.1365-246X.2006.02959.x
    [13]
    FINLAY C C, KLOSS C, OLSEN N, et al. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly[J]. Earth, Planets and Space, 2020, 72(1): 156 doi: 10.1186/s40623-020-01252-9
    [14]
    SABAKA T J, TØFFNER-CLAUSEN L, OLSEN N, et al. CM6: a comprehensive geomagnetic field model derived from both CHAMP and Swarm satellite observations[J]. Earth, Planets and Space, 2020, 72(1): 80 doi: 10.1186/s40623-020-01210-5
    [15]
    MAUS S, NAIR M C, POEDJONO B, et al. High definition geomagnetic models: a new perspective for improved wellbore positioning[C]//IADC/SPE Drilling Conference and Exhibition. San Diego, California, USA: SPE, 2012
    [16]
    YANG Y Y, HULOT G, VIGNERON P, et al. The CSES Global Geomagnetic field Model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite[J]. Earth, Planets and Space, 2021, 73(1): 1-21 doi: 10.1186/s40623-020-01323-x
    [17]
    YANG Yanyan, ZEREN Zhima, SHEN Xuhui, et al. Global geomagnetic field modeling based on Swarm Alpha magnetic field measurement[J]. Chinese Journal of Geophysics, 2024, 67(5): 1881-1890 (杨艳艳, 泽仁志玛, 申旭辉, 等. 基于Swarm卫星磁测数据的全球多场源地磁场建模[J]. 地球物理学报, 2024, 67(5): 1881-1890

    YANG Yanyan, ZEREN Zhima, SHEN Xuhui, et al. Global geomagnetic field modeling based on Swarm Alpha magnetic field measurement[J]. Chinese Journal of Geophysics, 2024, 67(5): 1881-1890
    [18]
    WANG Q, ZHENG C, WU P L, et al. Geomagnetic/inertial navigation integrated matching navigation method[J]. Heliyon, 2022, 8(11): e11249 doi: 10.1016/j.heliyon.2022.e11249
    [19]
    MAUS S, BARCKHAUSEN U, BERKENBOSCH H, et al. EMAG2: A 2–arc min resolution Earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8): Q08005
    [20]
    POEDJONO B, BECK N, BUCHANAN A, et al. Improved geomagnetic referencing in the arctic environment[C]//SPE Arctic and Extreme Environments Technical Conference and Exhibition. Moscow, Russia: SPE, 2013
    [21]
    THÉBAULT E, FINLAY C C, BEGGAN C D, et al. International geomagnetic reference field: the 12th generation[J]. Earth, Planets and Space, 2015, 67(1): 79 doi: 10.1186/s40623-015-0228-9
    [22]
    HULOT G, SABAKA T J, OLSEN N, et al. The present and future geomagnetic field[M]. Treatise on Geophysics (Second Edition), . Amsterdam: Elsevier, 2015, 5: 33-78
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article Views(327) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return