Volume 35 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
LIU Li, ZHENG Xiangdong, CHEN Shu, WANG Weihe, SHE Yong. Validation Study of FY-3A-TOU Total Ozone Using Ground-based Data[J]. Journal of Space Science, 2015, 35(6): 696-706. doi: 10.11728/cjss2015.06.696
Citation: LIU Li, ZHENG Xiangdong, CHEN Shu, WANG Weihe, SHE Yong. Validation Study of FY-3A-TOU Total Ozone Using Ground-based Data[J]. Journal of Space Science, 2015, 35(6): 696-706. doi: 10.11728/cjss2015.06.696

Validation Study of FY-3A-TOU Total Ozone Using Ground-based Data

doi: 10.11728/cjss2015.06.696
  • Received Date: 2014-11-13
  • Rev Recd Date: 2015-07-30
  • Publish Date: 2015-11-15
  • Total ozone from July 2009 to December 2013 measured by Total Ozone Unit (TOU) borne on the FY-3A meteorological satellite is validated with the ground-based observations over the global five latitudinal bands, the north pole (north to 63.5°N), middle north of hemisphere (23.5°N~63.5°N), tropic zone (23.5°N~23.5°S), middle of south hemisphere (23.5°S~63.5°S) and South Pole (south to 63.5°S). The results show that the linear correlated coefficient between TOU and the ground-based data is more than 0.95. The globally average TOU Relative Difference (RD) from the ground-based data is (-0.16±4.3)%, with the respective of (0.6±3.8)%, (-0.5±3.9)%, (1.8±3.1)%, (-0.6±3.7)% and (-0.1±3.9)% over the 5 north-southward bands. The sensitivity tests suggest that TOU RD over the tropical zone evidently rises with the growth of the ground-based total ozone. The global TOU ozone RD reduces as the Solar Zenith Angle (SZA) is greater than 70° and the RD may reach from -4% to -10% as SZA from 75° to 85°. The TOU ozone RD is insensitive to the variability of cloud amounts and altitudes: the RD ranges within ±2% as the cloud amount changes from 0 to 100% or the cloud altitude changes from 1 to 15km. The TOU ozone RD is sensitive to the absorptive aerosol characterized by the positive Aerosol Index (AI), and it may decrease from -2% to -5% over the middle of south hemisphere as the AI from 1 to more than 2. The globally respective RD of TOU ozone to Dobson, Brewer and SAOZ observations is (0.6±0.17)%, (0.05±0.2)% and (0.04±0.01)%. TOU RD is generally negative as the Dobson or SAOZ total ozone is lower than 200DU, while it generally 2%~6% as SAOZ total ozone is 430~500DU. The respective RD of TOU to Dobson, Brewer and SAOZ is also insensitive to variations of SZA (less than 70°) or the cloud amounts, however, the RD of TOU respective to Brewer and SAOZ may behavior some small trend with the occurrence of high cloud or positive AI.


  • loading
  • [1]
    WMO, UNEP. Assessment for decision maker: scientific assessment of ozone depletion: 2014//Global Ozone Research and Monitoring Project-Report No. 56[R]. Geneva, Switzerland, 2014
    McPeters R D, Bhartia P K, Haffner D, et al. The version 8.6 SBUV ozone data record: An overview[J]. J. Geophys. Res. Atmos., 2013, 118:8032-8039
    Fioletov V E, Labow G, Evans R, et al. Performance of the ground-based total ozone network assessed using satellite data[J]. J. Geophys. Res., 2008, 113, D14313, doi: 10.1029/2008JD009809
    Wang Weihe, Zhang Xingying, An Xingqin, et al. 2010. Analysis for retrieval and validation results of FY-3 Total Ozone Unit (TOU)[J]. Chin. Sci. Bull., 55:1726-1733. In Chinese (王维和, 张兴赢, 安兴琴, 等. 风云三号气象卫星全球臭氧总量 反演和真实性检验结果分析[J]. 科学通报, 2010, 17(55):1726-1733)
    Huang F X, Liu N Q, Zhao M X, et al. Vertical ozone profiles deduced from measurements of SBUS on FY-3 satellite[J]. Chin. Sci. Bull., 2010, 55(10):943-948
    Bai Kaixu, Liu Chaoshun, Shi Runhe, et al. Global validation of FY-3A total ozone unit (TOU) total ozone columns using ground-based Brewer and Dobson measurements[J]. Int. J. Remote Sensing, 2013, 34(14):5228-5242
    Zhang Yan, Wang Weihe, Zhang Xingying, et al. Interannual variations of Arctic ozone and their relationship to the Polar Vortex[J]. J. Remote Sensing, 2013, 17(3):534-541. In Chinese (张艳, 王维和, 张兴赢, 等. 北极臭氧年际变化特征及其与极涡的关系[J]. 遥感学报, 2013, 17(3):534-541)
    Yang Zhongdong, Lu Naimeng, Shi Jingming, et al. Overview of FY-3 payload and ground application system[J]. Adv. Meteor. Sci. Tech., 2013, 3(4):6-12. In Chinese (杨忠东, 卢乃锰, 施进明, 等. 风云三号卫星有效载荷与地面应用系统概述[J]. 气象科技进展, 2013, 3(4):6-12)
    Wang Weihe, Lawrence E Flynn, Zhang Xingying, et al. Cross-Calibration of the Total Ozone Unit (TOU) with the Ozone Monitoring Instrument (OMI) and SBUV/2 for environmental applications[J]. Adv. Meteor. Sci. Tech., 2013, 3(4):97-107. In Chinese (王维和, Lawrence E Flynn, 张兴赢, 等. 臭氧总量探测仪(TOU)与臭氧监测仪(OMI)和SBUV/2的交叉定标及 其在环境中的应用[J]. 气象科技进展, 2013, 3(4):97-107)
    Mcpeters R D. Nimbus_7 Total Ozone Mapping Spectrometer (TOMS) Data Products Users Guide[R]. NASA. Ref. Publ., 1996:1384
    Zheng Xiangdong. Investigation on effects of cloud on the precision of total ozone from satellite measurements over China region[J]. Chin. J. Atmos. Sci., 2008, 32(6):1431-1444. In Chinese (郑向东.云对中国区域卫星观测臭氧总量精度影响的检验分 析[J]. 大气科学, 2008, 32(6):1431-1444)
    James P. An interhemispheric comparison of ozone mini-hole climatologies[J]. Geophy. Res. Lett., 1998, 25(3):301-304
    Jackson D R, Orsolini Y J, Engelsen O. Low-ozone events in the southern polar summer as indicated by Met Office ozone analyses[J]. J. Geophys. Res., 2011, 116, D06302, doi: 10.1029/2010JD014858
    McPeter R D, Labow G J. An assessments of the accuracy of 14.5 years of Nimbus7 TOMS Version 7 ozone data by comparison with the Dobson network[J]. Geophys. Res. Lett., 1996, 23:3695-3698
    Thompson A M, NcNmara D P, Pickering K E, et al. Effects of marine stratocumulus on TOMS ozone[J]. J. Geophys. Res., 1993, 98:23051-23057
    Jiang Fang, Wang Yingjian, Liu Zhenxing, et al. A theoretical study on the effect of ozone below cloud on total ozone retrieved by TOMS and a new inversion algorithm[J]. Chin. J. Geophys., 50(2):364-369. In Chinese (江芳, 王英鉴, 刘振兴,等. 云顶以下臭氧对TOMS反演臭氧总量的 影响及反演方法的理论研究[J]. 地球物理学报, 2007, 50(2):364-369)
    McPeter R D, Labow G J. Satellite calibration monitoring using a Brewer, 7th Brewer user group meeting[R]. Toronto, Canada, 2002
    Sarkissian A, Vaughan G, Roscoe H K, et al. Accuracy of measurements of total ozone by a SAOZ ground-based zenith-sky visible spectrometer[J]. J. Geophys. Res., 1997, 102(D1):1379-1390
    Torres O, Barthia P K. Impact of tropospheric aerosol absorption on ozone retrieval from backscattered ultraviolet measurements[J]. J. Geophys. Res., 1999, 104(D17): 21569-21577
    Staehelin J, Evansr Kerr J, et al. Comparison of total ozone measurements of Dobson and Brewer spectrophotometers and recommended transfer functions[R]. GAW/WMO Reports No.149, WMO/TD No.1214. Geneva: WMO, 2003
    Weine A P. Josefsson: Quality of total ozone measured by the focused sun method using a brewer spectrophotometer[J]. J. Appl. Meteor., 2003, 42:7482
    Pommereau J P, Goutail F. Stratospheric O3 and NO2 observations at the southern polar circle in summer and fall 1988[J]. Geophys. Res. Lett., 1988, 15:895-899
    Hendrick F, Pommereau J P, Goutail F. NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations[J]. Atmos. Chem. Phys., 2011, 11:5975-5995
    Bemhard G, Evans R D, Labow G J. Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass[J]. J. Geophys. Res., 2005, 110, D10305, doi: 10.1029/2004JD005559
    Wagner T F, Erie L, Marquard C, et al. Cloudy sky optical paths as derived from differential optical absorption spectroscopy observations[J]. J. Geophys. Res., 1998, 103(D19):25307-25321
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(763) PDF Downloads(1156) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint