Volume 36 Issue 3
May  2016
Turn off MathJax
Article Contents
XIONG Ming, LIU Ying, LIU Hao, LI Baoquan, ZHENG Jianhua, ZHANG Cheng, XIA Lidong, ZHANG Hongxin, RAO Wei, CHEN Changya, SUN Weiying, WU Xia, DENG Yuanyong, HE Han, JIANG Bo, WANG Yuming, WANG Chuanbing, SHEN Chenglong, ZHANG Haiying, ZHANG Shenyi, YANG Xuan, SANG Peng, WU Ji. Overview of the Solar Polar Orbit Telescope Project for Space Weather Mission[J]. Journal of Space Science, 2016, 36(3): 245-266. doi: 10.11728/cjss2016.03.245
Citation: XIONG Ming, LIU Ying, LIU Hao, LI Baoquan, ZHENG Jianhua, ZHANG Cheng, XIA Lidong, ZHANG Hongxin, RAO Wei, CHEN Changya, SUN Weiying, WU Xia, DENG Yuanyong, HE Han, JIANG Bo, WANG Yuming, WANG Chuanbing, SHEN Chenglong, ZHANG Haiying, ZHANG Shenyi, YANG Xuan, SANG Peng, WU Ji. Overview of the Solar Polar Orbit Telescope Project for Space Weather Mission[J]. Journal of Space Science, 2016, 36(3): 245-266. doi: 10.11728/cjss2016.03.245

Overview of the Solar Polar Orbit Telescope Project for Space Weather Mission

doi: 10.11728/cjss2016.03.245
Funds:  Supported by the Strategic Priority Research Program on Space Science (XDA04060801,XDA04060802,XDA04060803,XDA04060804) of Chinese Academy of Sciences,the Specialized Research Fund for State Key Laboratory of China,the Chinese National Science Foundation (41374175,41204129),and the CAS/SAFEA international Partnership Program for Creative Research Teams
More Information
  • Author Bio:

    XIONG Ming,E-mail:mxiong@spaceweather.ac.cn

  • Received Date: 2016-02-21
  • Publish Date: 2016-05-15
  • The Solar Polar ORbit Telescope (SPORT) project for space weather mission has been under intensive scientific and engineering background studies since it was incorporated into the Chinese Space Science Strategic Pioneer Project in 2011.SPORT is designed to carry a suite of remote-sensing and in-situ instruments to observe Coronal Mass Ejections (CMEs),energetic particles,solar high-latitude magnetism,and the fast solar wind from a polar orbit around the Sun. The first extended view of the polar regions of the Sun and the ecliptic enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere,and the solar high-latitude magnetism giving rise to eruptions and the fast solar wind.Coordinated observations between SPORT and other spaceborne/ground-based facilities within the International Living With a Star (ILWS) framework can significantly enhance scientific output.SPORT is now competing for official selection and implementation during China's 13th Five-Year Plan period of 2016-2020.

     

  • loading
  • [1]
    National Science and Technology Council. National Space Weather Program Strategic Plan[M]. Washington:Office of the Federal Coordinator for Meteorological Services and Supporting Research, 2010
    [2]
    National Science and Technology Council. National Space Weather Strategy:Space Weather Operations, Research, and Mitigation (SWORM) Task Force[M]. Washington:Executive Office of the President of the United States, 2015
    [3]
    BELCHER J W, DAVIS L Jr. Large-amplitude Alfven waves in the interplanetary medium, 2[J]. J. Geophys. Res., 1971, 76:3534-3563
    [4]
    MATTHAEUS W H, GOLDSTEIN M L. Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind[J]. J. Geophys. Res., 1982, 87:6011-6028
    [5]
    TU C Y, MARSCH E. MHD structures, waves and turbulence in the solar wind:observations and theories[J]. Space Sci. Rev., 1995, 73:1-210
    [6]
    LI B, LI X. Propagation of non-Wentzel-KramersBrillouin alfven waves in a multi-component solar wind with differential ion flow[J]. Astrophys. J., 2007, 661:1222-1233
    [7]
    FORBES T G, LINKER J A, CHEN J, et al. CME theory and models[J]. Space Sci. Rev., 2006, 123:251-302
    [8]
    GOPALSWAMY N. Properties of interplanetary coronal mass ejections[J]. Space Sci. Rev., 2006, 124:145
    [9]
    WEBB D F, Howard T A. Coronal mass ejections:observations[J]. Living Rev. Solar Phys., 2012, 9:3
    [10]
    GOSLING J T, MCCOMAS D J, PHILLIPS J L, BAME S J. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections[J]. J. Geophys. Res., 1991, 96:7831-7839
    [11]
    ZHANG J, RICHARDSON I G, WEBB D F, et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤-100 nT) during 1996-2005[J]. J. Geophys. Res., 2007, 112(A10):A10102
    [12]
    BURLAGA L F, BEHANNON K W, KLEIN L W. Compound streams, magnetic clouds, and major geomagnetic storms[J]. J. Geophys. Res., 1987, 92:5725-5734
    [13]
    BURLAGA L F, PLUNKETT S P, ST CYR O C. Successive CMEs and complex ejecta[J]. J. Geophys. Res., 2002, 107:1266
    [14]
    WANG Y M, YE P Z, WANG S. Multiple magnetic clouds:several examples during March-April 2001[J]. J. Geophys. Res., 2003, 108:1370
    [15]
    XIONG M, ZHENG H N, WANG Y M, WANG S. Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness[J]. J. Geophys. Res., 2006, 111:A08105
    [16]
    XIONG M, ZHENG H N, WU S T, WANG Y M, WANG S. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness[J]. J. Geophys. Res., 2007, 112:A11103
    [17]
    SHEN C, WANG Y, WANG S, et al. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere[J]. Nat. Phys., 2012, 8:923
    [18]
    LIU Y, LUHMANN J G, KAJDIC P, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections[J]. Nat. Comm., 2014, 5:3481
    [19]
    Liu Y, Luhmann J G, Müller-Mellin R, et al. A comprehensive view of the 2006 December 13 CME:from the Sun to interplanetary space[J]. Astrophys. J., 2008, 689:563-571
    [20]
    ZHANG M, LOW B C. The hydromagnetic nature of solar coronal mass ejections[J]. Ann. Rev. Astron. Astrophys., 2005, 43:103-137
    [21]
    PEVTSOV A A, BERGER, M A, NINDOS A, et al. Magnetic helicity, tilt, and twist[J]. Space Sci. Rev., 2015, 186:285-324
    [22]
    KAISER M L, KUCERA T A, DAVILA J M, et al. The STEREO mission:An introduction[J]. Space Sci. Rev., 2008, 136:5-16
    [23]
    HOWARD R A, MOSES J D, VOURLIDAS A, et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)[J]. Space Sci. Rev., 2008, 136:67-115
    [24]
    EYLES C J, HARRISON R A, DAVIS C J, et al. The Heliospheric Imagers onboard the STEREO mission[J]. Solar Phys., 2009, 254:387-445
    [25]
    MARSDEN R G, WENZEL K P. The International Solar Polar Mission (ISPM)[J]. Plasma Astrophys., 1981, 164:51-59
    [26]
    WENZEL K P, MARSDEN R G, PAGE D E, SMITH E J. The Ulysses mission[J]. Astron. Astrophys. Supp., 1992, 92:207
    [27]
    SMITH E J, MARSDEN R G, PAGE D E. Ulysses above the Sun's south pole:an introduction[J]. Science, 1995, 268:1005-1007
    [28]
    MCCOMAS D J, BARRACLOUGH B L, FUNSTEN H O, et al. Solar wind observations over Ulysses' first full polar orbit[J]. J. Geophys. Res., 2000, 105:10419-10434
    [29]
    BALOGH A, MARSDEN R G, SMITH E J. The Heliosphere near Solar Minimum:the Ulysses Perspective[R]. Chichester:Springer-Praxis, 2001
    [30]
    WU J, SUN W Y, ZHENG J H, et al. Imaging interplanetary CMEs at radio frequency from solar polar orbit[J]. Adv. Space Res., 2011, 48:943
    [31]
    WU J, SUN L L. Strategic priority program on space science[J]. Chin. J. Space Sci., 2014, 34(5):505-515
    [32]
    JACKSON B V, HICK P P, BUFFINGTON A, et al. Three-dimensional reconstruction of heliospheric structure using iterative tomography:a review[J]. J. Atmos. Solar-Terre. Phys., 2011, 73(10):1214-1227
    [33]
    THERNISIEN A, VOURLIDAS A, HOWARD R A. Forward modeling of coronal mass ejections using STEREO/SECCHI data[J]. Solar Phys., 2009, 256:111
    [34]
    LIU Y, DAVIES J A, LUHMANN J G, et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU[J]. Astrophys. J., 2010, 710:L82-L87
    [35]
    LUGAZ N, HERNANDEZ-CHARPAK J N, ROUSSEV I I, et al. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI[J]. Astrophys. J., 2010, 715:493-499
    [36]
    DAVIES J A, PERRY C H, TRINES R M G M, et al. Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry[J]. Astrophys. J., 2013, 777:167
    [37]
    ROUILLARD A P, DAVIES J A, FORSYTH R J, et al. A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft[J]. J. Geophys. Res., 2009, 114:A07106
    [38]
    MOSTL C, TEMMER M, ROLLETT T, FARRUGIA C J, et al. STEREO and WIND observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5-7 April 2010[J]. Geophys. Res. Lett., 2010, 37:L24103
    [39]
    LUGAZ N, VOURLIDAS A, ROUSSEV I I, MORGAN H. Solar-terrestrial simulation in the STEREO era:the 24-25 January 2007 eruptions[J]. Solar Phys., 2009, 256:269
    [40]
    XIONG M, DAVIES J A, BISI M M, OWENS M J, FALLOWS R A, DORRIAN G D. Effects of ThomsonScattering geometry on white-light imaging of an interplanetary shock:synthetic observations from forward magnetohydrodynamic modelling[J]. Solar Phys., 2013, 285:369-389
    [41]
    XIONG M, DAVIES J A, FENG X, OWENS M J, HARRISON R A, DAVIS C J, LIU Y. Using coordinated observations in polarized white light and Faraday rotation to probe the spatial position and magnetic field of an interplanetary sheath[J]. Astrophys. J., 2013, 777:32
    [42]
    BABCOCK H D. The Sun's polar magnetic field[J]. Astrophys. J., 1959, 130:364
    [43]
    TSUNETA S, ICHIMOTO K, KATSUKAWA Y, et al. The magnetic landscape of the Sun's polar region[J]. Astrophys. J., 2008, 688:1374-1381
    [44]
    SUN X, HOEKSEMA J T, LIU Y, ZHAO J. On polar magnetic field reversal and surface flux transport during solar cycle 24[J]. Astrophys. J., 2015, 798:114
    [45]
    PETRIE G J D. Solar magnetism in the polar regions[J]. Living Rev. Solar Phys., 2015, 12:5
    [46]
    WANG Y M, LEAN J, SHEELEY N R. Role of a variable meridional flow in the secular evolution of the Sun's polar fields and open flux[J]. Astrophys. J. Lett., 2002, 577:L53-L57
    [47]
    CHOUDHURI A R, CHATTERJEE P, JIANG J. Predicting solar cycle 24 with a solar dynamo model[J]. Phys. Rev. Lett., 2007, 98:131103
    [48]
    UPTON L, HATHAWAY D H. Predicting the Sun's polar magnetic fields with a surface flux transport model[J]. Astrophys. J., 2014, 780:5
    [49]
    SUN X, LIU Y, HOEKSEMA J T, HAYASHI K, ZHAO X. A new method for polar field interpolation[J]. Solar Phys., 2011, 270:9
    [50]
    XIA L D. Equatorial Coronal Holes and Their Relation to the High-speed Solar Wind Streams[D]. Göttingen:Georg-August-University, 2003
    [51]
    XIA L D, MARSCH E, WILHELM K. On the network structures in solar equatorial coronal holes:observations of SUMER and MDI on SOHO[J]. Astron. Astrophys., 2004, 424(3):1025-1037
    [52]
    TIAN H, DELUCA E E, CRANMER S R, et al. Prevalence of small-scale jets from the networks of the solar transition region and chromosphere[J]. Science, 2014, 346:1255711
    [53]
    TU C Y, ZHOU C, MARSCH E, XIA L D. Solar wind origin in coronal funnels[J]. Science, 2005, 308:519
    [54]
    PARKER E N. Dynamics of the interplanetary gas and magnetic fields[J]. Astrophys. J., 1958, 128:664
    [55]
    CRANMER S R. Coronal holes and the high-speed solar wind[J]. Space Sci. Rev., 2002, 101:229
    [56]
    FELDMAN U, LANDI E, SCHWADRON N A. On the sources of fast and slow solar wind[J]. J. Geophys. Res., 2005, 110(A7):A07109
    [57]
    HOEKSEMA J T, WILCOX J M, SCHERRER P H. The structure of the heliospheric current sheet:1978-1982[J]. J. Geophys. Res., 1983, 88:9910-9918
    [58]
    SMITH E J. The heliospheric current sheet[J]. J. Geophys. Res., 2001, 106(A8):15819-15832
    [59]
    ZHAO X P, HOEKSEMA J T, SCHERRER P H. Prediction and understanding of the north-south displacement of the heliospheric current sheet[J]. J. Geophys. Res., 2005, 110(A10):A10101
    [60]
    BURLAGA L F. Intermittent turbulence in the solar wind[J]. J. Geophys. Res., 1991, 96:5847-5851
    [61]
    ROBERTS O W, LI X, LI B. Kinetic plasma turbulence in the fast solar wind measured by Cluster[J]. Astrophys. J., 2013, 769:58
    [62]
    STIX T H. Waves in Plasmas[M]. New York:American Institute of Physics, 1992
    [63]
    LEAMON R J, SMITH C W, NESS N F, MATTHAEUS W H, WONG H K. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range[J]. J. Geophys. Res., 1998, 103:4775
    [64]
    BALE S D, KELLOGG P J, MOZER F S, HORBURY T S, REME H. Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence[J]. Phys. Rev. Lett., 2005, 94(21):215002
    [65]
    HE J, MARSCH E, TU C, YAO S, TIAN H. Possible evidence of Alfven-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence[J]. Astrophys. J., 2011, 731:85
    [66]
    JOKIPⅡ J R. Cosmic-ray propagation. I. Charged parti-cles in a random magnetic field[J]. Astrophys. J., 1966, 146:480
    [67]
    ZHANG M, QIN G, RASSOUL H. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields[J]. Astrophys. J., 2009, 692:109-132
    [68]
    MATTHAEUS W H, QIN G, BIEBER J W, ZANK G P. Nonlinear collisionless perpendicular diffusion of charged particles[J]. Astrophys. J. Lett., 2003, 590:L53-L56
    [69]
    LEE M A. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks[J]. J. Geophys. Res., 1983, 88:6109-6119
    [70]
    ZANK G P, RICE W K M, WU C C. Particle acceleration and coronal mass ejection driven shocks:a theoretical model[J]. J. Geophys. Res., 2000, 105(A11):25079-25096
    [71]
    REAMES D V, BARBIER L M, NG C K. The spatial distribution of particles accelerated by coronal mass ejectiondriven shocks[J]. Astrophys. J., 1996, 466:473
    [72]
    REAMES D V, KAHLER S W, NG C K. Spatial and temporal invariance in the spectra of energetic particles in gradual solar events[J]. Astrophys. J., 1997, 491:414-420
    [73]
    HARRISON R A, DAVIS C J, EYLES C J, et al. First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun-Earth line[J]. Solar Phys., 2008, 247:171-193
    [74]
    DAVIES J A, HARRISON R A, ROUILLARD A P, et al. A synoptic view of solar transient evolution in the inner heliosphere using the heliospheric imagers on STEREO[J]. Geophys. Res. Lett., 2009, 36:L02102
    [75]
    JACKSON B, BUFFINGTON A, HICK P, et al. A heliospheric imager for deep space:lessons learned from Helios, SMEI, and STEREO[J]. Solar Phys., 2010, 265:257-275
    [76]
    DEFOREST C E, HOWARD T A. Feasibility of heliospheric imaging from near Earth[J]. Astrophys. J., 2015, 804:126
    [77]
    GLOECKLER G, BALSIGER H, BURGI A, et al. The solar wind and suprathermal ion composition investigation on the WIND spacecraft[J]. Space Sci. Rev., 1995, 71:79-124
    [78]
    GLOECKLER G, CAIN J, IPAVICH F M, et al. Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft[J]. Space Sci. Rev., 1998, 86:497
    [79]
    FENG X, YANG L, XIANG C, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophys. J., 2010, 723:300
    [80]
    FENG X, ZHANG M, ZHOU Y. A new three-dimensional solar wind model in spherical coordinates with a sixcomponent grid[J]. Astrophys. J., 2014, 214(Supp.):6
    [81]
    ZHOU Y, FENG X, ZHAO X. Using a 3-D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft:the 3 April 2010 event[J]. J. Geophys. Res., 2014, 119:9321-9333
    [82]
    FENG X, MA X, XIANG C. Data-driven modeling of the solar wind from 1 Rs to 1 AU[J]. J. Geophys. Res., 2015, 120:10159-10174
    [83]
    SUN W Y, WU J. A study of the Bremsstrahlung of plasma at about 1 AU in times of quiet Sun and flare activity[J]. Chin. Astron. Astrophys., 2005, 29:149
    [84]
    SUN W Y, WU J. Radiation mechanisms of the plasma near point L1 affected by CMEs and associated microwave bursts[J]. Chin. Astron. Astrophys., 2005, 29:413
    [85]
    WU J, HUANG Y H, DONG X L. Image retrieval algorithm of two-dimensional synthetic aperture radiometer[C]//Sydney:IEEE Geoscience and Remote Sensing Symposium (IGARSS), 2001:3268-3270
    [86]
    LIU H, MAAGT DE P, CHRISTENSEN J, et al. Radiometric analysis of the rotating synthetic aperture radiometers utilizing grid-based measurement approach[C]//Barcelona:IEEE Geoscience and Remote Sensing Symposium (IGARSS), 2007:235-238
    [87]
    ZHANG C, WU J, LIU H, et al. Scan scheme and imaging algorithm of Solar Polar Orbiter Telescope (SPORT)[C]//Vancouver:IEEE Geoscience and Remote Sensing Symposium (IGARSS), 2011:2266-2269
    [88]
    HOWARD T A, TAPPIN S J. Interplanetary coronal mass ejections observed in the heliosphere:1. Review of theory[J]. Space Sci. Rev., 2009, 147:31-54
    [89]
    DEFOREST C E, HOWARD T A, TAPPIN S J. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2[J]. Astrophys. J., 2011, 738:103
    [90]
    HARRISON R A, DAVIS C J, EYLES C J. The STEREO heliospheric imager:how to detect CMEs in the heliosphere[J]. Adv. Space Res., 2005, 36:1512-1523
    [91]
    ZHANG H X, LU Z W, XIA L D, LIU H, LI P. Stray light suppressing of optical system in white light coronagraph[J]. Opt. Prec. Eng.. 2009, 17(10):2371-2376
    [92]
    SUN M Z, ZHANG H X, BU H Y, et al. Computation of the diffracted field of a toothed occulter by the semiinfinite rectangle method[J]. J. Opt. Soc. Am. A, 2013, 30(10):2140-2149
    [93]
    BRUECKNER G, HOWARD R, KOOMEN M, et al. The Large Angle Spectroscopic Coronagraph (LASCO)[J]. Solar Phys., 1995, 162:357-402
    [94]
    DELABOUDINIERE J P, ARTZNER G E, BRUNAUD J, et al. EIT:Extreme-ultraviolet Imaging Telescope for the SOHO mission[J]. Solar Phys., 1995, 162(1/2):291-312
    [95]
    LI B Q, ZHU G W, WANG S J, LIN H A, et al. Solar X-EUV Imaging Telescope[J]. Chin. J. Geophys., 2005, 48(2):235-242
    [96]
    LI B Q, LI H T, ZHOU S Z, JIANG B. The Lymanalpha imager onboard Solar Polar ORbit Telescope[J]. Proc. SPIE, 2013, 9042(4):237-244
    [97]
    SCHERRER P H, BOGART R S, BUSH R I, et al. The solar oscillations investigation-Michelson Doppler imager[J]. Solar Phys., 1995, 162:129
    [98]
    SCHERRER P H, SCHOU J, BUSH R I, et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO)[J]. Solar Phys., 2012, 275:207-227
    [99]
    WANG D G, DENG Y Y, AI G X. Analysis of a new polarimeter for space solar telescope[J]. Proc. SPIE. 2003:406-413
    [100]
    AZZAM R M A. Division-of-amplitude Photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light[J]. J. Mod. Opt., 1982, 29(5):685-689
    [101]
    MULLER D, MARSDEN R G, ST CYR O C, GILBERT H R. Solar Orbiter:exploring the Sun heliosphere connection[J]. Solar Phys., 2013, 285:25-70
    [102]
    SMITH E J, WENZEL K P, PAGE D E. Ulysses at Jupiter:an overview of the encounter[J]. Science, 1992, 257:1503
    [103]
    SUN Z Z, ZHANG T X, ZHANG H, et al. The technical design and achievements of Chang'E-3 probe[J]. Sci. Sin. Tech., 2014, 44:331-343
    [104]
    Future out-of-ecliptic and in-situ observations of the Sun[R]//International Space Science Institute (ISSI) Annual Report 2010-2011. Bern:International Space Science Institute,2011
    [105]
    Solar Probe Plus report of the Science and Technology Definition Team (STDT)[R]. Washington:NASA, 2008
    [106]
    FOX N J, VELLI M C, BALE S D, et al. The Solar Probe Plus mission:Humanity's first visit to our star[J]. Space Sci. Rev., 2015. DOI: 10.1007/s11214-015-0211-6
    [107]
    MARSDEN R G, MULLER D. Solar Orbiter definition study report (Red Book). Paris:ESA, 2011
    [108]
    KUZNETSOV V D, ORAEVSKY V N. Russian plans for solar and heliospheric physics[C]//Proceedings of a crossroads for European solar & heliospheric physics. Tenerife:ESA, 1998:417
    [109]
    ORAEVSKY V N, GALEEV A A, KUZNETSOV V D, ZELENYI L M. Russian payload for "interhelioprobe" ("interhelios") mission[J]. Adv. Space Res., 2002, 29:2041
    [110]
    MACDONALD M, ATZEI A, FALKNER P, et al. Solar polar orbiter:a solar sail technology reference study[J]. J. Spacecraft Rockets, 2006, 43:960-972
    [111]
    APPOURCHAUX T, LIEWER P, WATT M, et al. POLAR investigation of the Sun POLARIS[J]. Exp. Astron., 2009, 23:1079-1117
    [112]
    LIU Z X. Geospace Double Star exploration project[J]. Chin. J. Geophys., 2001, 44(4):573-580
    [113]
    WU J, ZHU G W, ZHAO H, et al. Overview of scientific objects of China-Russia joint Mars exploration program YH-1[J]. Chin. J. Space Sci., 2009, 29(5):449-455
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1042) PDF Downloads(2552) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return