Volume 40 Issue 3
May  2020
Turn off MathJax
Article Contents
SHEN Dan, LIU Jing. Analysis of the Effectiveness of Launch Traffic Model to the Space Debris Environment[J]. Journal of Space Science, 2020, 40(3): 349-356. doi: 10.11728/cjss2020.03.349
Citation: SHEN Dan, LIU Jing. Analysis of the Effectiveness of Launch Traffic Model to the Space Debris Environment[J]. Journal of Space Science, 2020, 40(3): 349-356. doi: 10.11728/cjss2020.03.349

Analysis of the Effectiveness of Launch Traffic Model to the Space Debris Environment

doi: 10.11728/cjss2020.03.349
  • Received Date: 2019-04-16
  • Rev Recd Date: 2019-11-22
  • Publish Date: 2020-05-15
  • The future launch will directly affect the space debris environment, and it must be rationally planned for maintaining the long-term sustainable development of outer space. In this paper, the Space Object Long-term Evolution Model (SOLEM) and Monte Carlo method are used to quantitatively analyze the effects of the launch number, launch mass and launch area of space objects on the future space debris environment, and increase in the numbers of collisions and space debris caused by large constellations are studied. The simulation results show that the main factors affecting the collision are the number of launches, the launch area, and the launch mass, which will affect the number of debris generated by the collision. Deployment of large constellations will have a great impact on the space environment. These provide a theoretical basis for rational planning of the future launch.

     

  • loading
  • [1]
    REDTKE J, MUELLER S, SCHAUS V, et al. LUCA2-An enhanced long-term utility for collision analysis[C]//Proceedings of the 7th European Conference on Space Debris. Darmstadt:European Space Agency, 2017
    [2]
    DOLADO-PEREZ J C, POMAIN D C, BRUNO R. Introducing MEDEE-a new orbital debris evolutionary model[C]//Proceedings of the 6th European Conference on Space Debris. Darmstadt:European Space Agency, 2013:22-25
    [3]
    LIOU J C, HALL D T, KRISKO P H, et al. LEGEND-A three-dimensional LEO-to-GEO debris evolutionary model[J]. Adv. Space Res., 2014, 34(5):981-986
    [4]
    WALKER R, MARTIN C E, STOKES P H, et al. Analysis of the effectiveness of space debris mitigation measures using the Delta model[J]. Adv. Space Res., 2001, 28(9):1437-1445
    [5]
    MARTIN C E, WALKER R, KLINKRAD H. The sensitivity of the ESA DELTA model[J]. Adv. Space Res., 2004, 34(5):969-974
    [6]
    HANADA T, ARIYOSHI Y, MIYAZAKI K, et al. Orbital debris modeling at Kyushu University[J]. Space Tech. Sci., 2009, 24(2):23-35
    [7]
    NARUMI T, HANADA T, KAWAMOTO S. Space debris environmental evolutionary model in low earth orbit[J]. Space Tech. Jpn., 2000, 48(7):11-17
    [8]
    LEWIS H G, SWINERD G G, NEWLAND R J. The space debris environment:future evolution[J]. Aeron. J., 2011, 115(1166):241-247
    [9]
    ROSSI A, CORDELLI A, PARDINI C, et al. Modelling the Space Debris Environment:Two New Computer Codes[R]. Pisa:Consorzio Pisa Ricerche, 1996
    [10]
    ROSSI A, ANSELMO L, PARDINI C, et al. Final Report, Upgrade of the Semi-Deterministic Model to Study the Long-Term Evolution of the Space Debris[R]. Pisa:Consorzio Pisa Ricerche, 2004
    [11]
    ROSSI A, ANSELMO L, PARDINI C, et al. Final Report, Semi-Deterministic Model[R]. Pisa:Consorzio Pisa Ricerche, 2009
    [12]
    ROSSI A, ANSELMO L, PARDINI C, et al. The new space debris mitigation (SDM 4.0) long term evolution code[C]//Proceedings of the 5th European Conference on Space Debris. Darmstad:European Space Agency, 2009
    [13]
    LIU J C, ANIKYMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//Proceedings of the 6th European Conference on Space Debris. Darmstadt:European Space Agency, 2013
    [14]
    WANG Xiaowei, LIU jing. An introduction to a new space debris evolution model:SOLEM[J]. Adv. Astron., 2019. DOI: org/10.1155/2019/2738276
    [15]
    WANG X W, LIU J, CUI S X. A collision probability estimation algorithm used in the space debris evolution model[J]. J. Astronaut., 2019, 40(4):482-488(王晓伟, 刘静, 崔双星. 一种应用于空间碎片演化模型的碰撞概率算法[J]. 宇航学报, 2019, 40(4):482-488)
    [16]
    WANG Xiaowei, LIU Jing, WU Xiangbin, et al. Space objects long-term evolution model and the first analysis[C]//Proceedings of the 8th Space Debris Meeting in China. Beijing:China Academy of Launch Vehicle Technology, 2015:238-244(王晓伟, 刘静, 吴相彬, 等. 空间碎片长期演化模型与初步结果分析[C]//第八届全国空间碎片学术交流会. 北京:中国运载火箭技术研究院, 2015:238-244)
    [17]
    WANG Xiaowei, LIU Jing, CUI Shuangxing, et al. Analysis of effects of mitigation and active debris removal Using SOLEM[C]//Proceedings of the 9th Space Debris Meeting in China. Guiyang:China Academy of Launch Vehicle Technology, 2017(王晓伟, 刘静, 崔双星等. 基于SOLEM模型的碎片减缓和清除策略影响分析[C]//第九届全国空间碎片学术交流会. 贵阳:中国运载火箭技术研究院, 2017)
    [18]
    LIOU J C, ANILKUMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//6th European Conference on Space Debris. Darmstadt:Inter-Agency Space Debris Coordination Committee, 2013
    [19]
    LEWIS H G. TIMOTHY H. Implications of prolonged solar minimum conditions for the space debris population[C]//Proceedings of the 6th European Conference on Space Debris. Darmstadt:European Space Agency, 2013
    [20]
    VIRGILI B B, LEMMENS S, FLOHRER T, et al. Influence of solar activity on long term propagations[C]//Proceedings of the 65th International Astronautical Congress. Toronto:International Astronautical Federation, 2014
    [21]
    DOLADO P J C, BRUNO R, ROMAIN D C. Sensitivity analysis of the long-term evolution of the space debris population in LEO[C]//Proceedings of the 65th International Astronautical Congress. Toronto International Astronautical Federation, 2014
    [22]
    DOLADO P J C, CARMEN P, ANSELMO L. Review of uncertainty sources affecting the long-term predictions of space debris evolutionary models[J]. Acta Astron., 2015, 113:51-65
    [23]
    LUIGI S G, LEWIS H G, CAMILLA C. Sensitivity analysis of launch activities in Low Earth Orbit[J]. Acta Astronaut., 2019, 158(2019):129-139
    [24]
    VIRGILI B B, DOLADO J C, LEWIS H G, et al. Risk to space sustain ability from large constellations of satellites[J]. Acta Astronaut., 2016, 126:154-162. DOI: https://www.sciencedirect.com/science/article/abs/pii/S0094576516300820
    [25]
    VIRGILI B B, KRAG H. Small satellites and the future space debris environment[C]//Proceedings of the 30th International Symposium on Space Technology and Science (ISTS), Kobe:JSASS, 2015
    [26]
    VIRGILI B B, KRAG H, LEWIS H, et al. Mega-constellations, small satellites and their impact on the space debris environment[C]//Proceedings of the 67th International Astronautical Congress (IAC). Guadalajara:International Astronautical Federation, 2016
    [27]
    RADTKE J, KEBSCHULL C, STOLL E. Interactions of the space debris environment with mega constellations-Using the example of the OneWeb constellation[J]. Acta Astron., 2016, 131(2016):55-68
    [28]
    RADTKE J, STOLL E, LEWIS H, et al. The impact of the increase in small satellite launch traffic on the long-term evolution of the space debris environment[C]//Proceedings of the 7th European Conference on Space Debris, Darmstadt:European Space Agency, 2017
    [29]
    KITAJIMAA S, ABEB S, HABADAC T, et al. Influences of MEGA constellations on the orbital environment[C]//Proceedings of the 67th International Astronautical Congress (IAC). Guadalajara:International Astronautical Federation, 2016
    [30]
    ZHANG Yulin, FAN Li, ZHANG Yan, et al. Theory and Design of Satellite Constellation[M]. Beijing:Science Press, 2008:39-52(张育林, 范丽, 张燕, 等. 卫星星座理论与设计[M]. 北京:科学出版社, 2008:39-52)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(414) PDF Downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return