Volume 42 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
FENG Taojun, YU Qian, ZHANG Kai. An Algorithm for Retrieving Ionospheric Electron Density from Far Ultraviolet Remote Sensing Based on Maximum Likelihood Estimation (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1100-1110 doi: 10.11728/cjss2022.06.211115118
Citation: FENG Taojun, YU Qian, ZHANG Kai. An Algorithm for Retrieving Ionospheric Electron Density from Far Ultraviolet Remote Sensing Based on Maximum Likelihood Estimation (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1100-1110 doi: 10.11728/cjss2022.06.211115118

An Algorithm for Retrieving Ionospheric Electron Density from Far Ultraviolet Remote Sensing Based on Maximum Likelihood Estimation

doi: 10.11728/cjss2022.06.211115118
  • Received Date: 2021-11-15
  • Accepted Date: 2021-04-15
  • Rev Recd Date: 2022-05-05
  • Available Online: 2022-11-09
  • The OI 135.6 nm nighttime emission is dominantly produced by radiative recombination of O+ ions and electrons. Many previous space-based Far Ultraviolet (FUV) remote sensing experiments have demonstrated that OI 135.6 nm nighttime intensity can be used to infer the ionospheric F region electron density. This paper firstly presents a forward model specifying the nonlinear relationship between electron density and 135.6 nm nightglow intensity. Then, we develop an algorithm to infer the altitude profile of electron density from the nighttime 135.6 nm limb intensity measurements using Discrete Inverse Theory (DIT). The algorithm applies maximum likelihood method to iteratively seek the most probable values of the ionospheric parameters. The viability of this algorithm is verified through performing the simulation of the synthetic 135.6 nm limb observation data generated from forward model using the TIMED/GUVI limb scan configuration. Finally, we invert the realistic GUVI limb observation measurements and obtain the retrieved Electron Density Profile (EDP). The comparison between retrieved ionospheric parameters and GUVI products suggests that the forward model tends to overestimate the NmF2 and underestimate the hmF2. The systematic error is within 10% for NmF2 and 5% for hmF2 for different level of solar activity. Determining ionosphere electron density with high precision could help improve the ionospheric model and forecast the space weather.

     

  • loading
  • [1]
    BRUNINI C, AZPILICUETA F, JANCHES D. An attempt to establish a statistical model of the day-to-day variability of the NmF2 and hmF2 parameters computed from IRI[J]. Advances in Space Research, 2015, 55(8): 2033-2040 doi: 10.1016/j.asr.2014.07.023
    [2]
    COOK K, FONG C J, WENKEL M J, et al. FORMOSAT-7/COSMIC-2 GNSS radio occultation constellation mission for global weather monitoring[C]//Proceedings of 2013 IEEE Aerospace Conference. Big Sky: IEEE, 2013: 1-8
    [3]
    TSAI L C, SU S Y, LIU C H. Global morphology of ionospheric F-layer scintillations using FS3/COSMIC GPS radio occultation data[J]. GPS Solutions, 2017, 21(3): 1037-1048 doi: 10.1007/s10291-016-0591-4
    [4]
    MEIER R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Science Reviews, 1991, 58(1): 1-185 doi: 10.1007/BF01206000
    [5]
    HSU M L, RAJESH P K, LIU J Y, et al. Ionospheric electron density concurrently derived by TIP and GOX of FORMOSAT-3/COSMIC[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2009, 20(1): 207-214 doi: 10.3319/TAO.2008.04.24.02(F3C)
    [6]
    RAJESH P K, LIU J Y, HSU M L, et al. Ionospheric electron content and NmF2 from nighttime OI 135.6 nm intensity[J]. Journal of Geophysical Research, 2011, 116(A2): A02313
    [7]
    DYMOND K F, NICHOLAS A C, BUDZIEN S A, et al. The special sensor ultraviolet limb imager instruments[J]. Journal of Geophysical Research, 2017, 122(2): 2674-2685 doi: 10.1002/2016JA022763
    [8]
    MENDE S B, HEETDERKS H, FREY H U, et al. Far ultraviolet imaging from the image spacecraft. 1. System design[J]. Space Science Reviews, 2000, 91(1/2): 243-270 doi: 10.1023/A:1005271728567
    [9]
    PAXTON L J, CHRISTENSEN A B, MORRISON D, et al. GUVI: a hyperspectral imager for geospace[C]//Proceedings of SPIE 5660, Instruments, Science, and Methods for Geospace and Planetary Remote Sensing. Honolulu: SPIE, 2004: 228-240
    [10]
    EASTES R W, MCCLINTOCK W E, BURNS A G, et al. The global-scale observations of the limb and disk (GOLD) mission[J]. Space Science Reviews, 2017, 212(1/2): 383-408
    [11]
    DEMAJISTRE R, PAXTON L J, MORRISON D, et al. Retrievals of nighttime electron density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission Global Ultraviolet Imager (GUVI) measurements[J]. Journal of Geophysical Research, 2004, 109(A5): A05305
    [12]
    DYMOND K F, BUDZIEN S A, CHUA D H, et al. Tomographic reconstruction of the low-latitude nighttime electron density using FORMOSAT-3/COMSIC radio occultation and UV photometer data[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2009, 20(1): 215-226 doi: 10.3319/TAO.2008.01.15.01(F3C)
    [13]
    QIN J Q, MAKELA J J, KAMALABADI F, et al. Radiative transfer modeling of the OI 135.6 nm emission in the nighttime ionosphere[J]. Journal of Geophysical Research, 2015, 120(11): 10116-10135 doi: 10.1002/2015JA021687
    [14]
    DYMOND K F, BUDZEN S A, COKER C, et al. The tiny ionospheric photometer (TIP) on the constellation observing system for meteorology, ionosphere, and climate (COSMIC/FORMOSAT-3)[J]. Journal of Geophysical Research, 2016, 121(10): 10614-10622
    [15]
    DYMOND K F, NEE J B, THOMAS R J. The tiny ionospheric photometer: an instrument for measuring ionospheric gradients for the COSMIC constellation[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2000, 11(1): 273-290 doi: 10.3319/TAO.2000.11.1.273(COSMIC)
    [16]
    MENKE W. Geophysical Data Analysis: Discrete Inverse Theory[M]. San Diego: Academic Press, 1989
    [17]
    MEIER R R, PICONE J M. Retrieval of absolute thermospheric concentrations from the far UV dayglow: an application of discrete inverse theory[J]. Journal of Geophysical Research, 1994, 99(A4): 6307-6320 doi: 10.1029/93JA02775
    [18]
    PUJOL J. The solution of nonlinear inverse problems and the Levenberg-Marquardt method[J]. Geophysics, 2007, 72(4): W1-W16 doi: 10.1190/1.2732552
    [19]
    BELLAVIA S, GRATTON S, RICCIETTI E. A Levenberg–Marquardt method for large nonlinear least-squares problems with dynamic accuracy in functions and gradients[J]. Numerische Mathematik, 2018, 140(3): 791-825 doi: 10.1007/s00211-018-0977-z
    [20]
    HUMM D C, PAXTON L J, CHRISTENSEN A B, et al. Design and performance of the global ultraviolet imager (GUVI)[C]//Proceedings of SPIE 3445, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IX. San Diego: SPIE, 1998: 2-12
    [21]
    高超, 刘黎军, 王志强, 等. “风云三号”电离层掩星气候学数据处理方法[J]. 航天器环境工程, 2021, 38(3): 311-317

    GAO Chao, LIU Lijun, WANG Zhiqiang, et al. Processing climatological data observed from FY-3 ionospheric occultation[J]. Spacecraft Environment Engineering, 2021, 38(3): 311-317
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(174) PDF Downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return