Volume 42 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
HE Lifang, ZHENG Huilong, WANG Xikun, YANG Xiaofang, ZHANG Xiaowu. Ground Experiment Investigation of PIV Unit for Combustion Science Experimental System of China Space Station (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1152-1160 doi: 10.11728/cjss2022.06.211123121
Citation: HE Lifang, ZHENG Huilong, WANG Xikun, YANG Xiaofang, ZHANG Xiaowu. Ground Experiment Investigation of PIV Unit for Combustion Science Experimental System of China Space Station (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1152-1160 doi: 10.11728/cjss2022.06.211123121

Ground Experiment Investigation of PIV Unit for Combustion Science Experimental System of China Space Station

doi: 10.11728/cjss2022.06.211123121
  • Received Date: 2021-11-19
  • Rev Recd Date: 2022-04-26
  • Available Online: 2022-11-09
  • The Combustion Science Experimental System of China Space Station is a comprehensive scientific platform for microgravity combustion experiment research, which is feasible for velocity measurement. In order to test the feasibility function of Particle Image Velocimetry (PIV), an experimental platform for laminar circular orifice jet, which has the same spatial layout of the laser and camera as that in-orbit operation, was built for reacting flow field and non-reacting flow field experiment. Al2O3, TiO2 and ZrO2 were selected as tracer particles. The experimental results indicate that the combustion science experimental system of PIV unit is feasible for low-speed combustion field measurement. Under the same conditions, the obtained velocities by using Al2O3 particles are closer to analytical values with velocity amplitude ratio nearest to 1, which suggests that Al2O3 particles are more suitable for low-speed field. The present study can provide the selection basis for particle species in ground-space comparison experiments.

     

  • loading
  • [1]
    孔文俊, 张孝谦. 微重力环境下燃烧科学研究的机遇与进展[J]. 燃烧科学与技术, 1997, 3(4): 424-436

    KONG Wenjun, ZHANG Xiaoqian. Opportunities and progress of research on combustion in microgravity[J]. Journal of Combustion Science and Technology, 1997, 3(4): 424-436
    [2]
    赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034

    ZHAO Jianfu, WANG Shuangfeng, LIU Qiang, et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
    [3]
    IRACE P H, LEE H J, WADDELL K, et al. Observations of long duration microgravity spherical diffusion flames aboard the international space station[J]. Combustion and Flame, 2021, 229: 111373 doi: 10.1016/j.combustflame.2021.02.019
    [4]
    LIN K C, FAETH G M, SUNDERLAND P B, et al. Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames[J]. Combustion and Flame, 1999, 116(3): 415-431 doi: 10.1016/S0010-2180(98)00100-X
    [5]
    DOTSON K, SUNDERLAND P, YUAN Z G, et al. Laminar smoke points in coflow measured aboard the international space station[C]//Proceedings of the 48 th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2010
    [6]
    FAROUK T I, HICKS M C, DRYER F L. Multistage oscillatory “Cool Flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1701-1708 doi: 10.1016/j.proci.2014.06.015
    [7]
    YOSHIDA Y, IWAI K, NAGATA K, et al. Flame-spread limit from interactive burning droplets in microgravity[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3409-3416 doi: 10.1016/j.proci.2018.07.106
    [8]
    YOSHIDA Y, SEO T, MIKAMI M, et al. Temperature-field analysis of flame spread over droplet-cloud elements with interactive droplets in microgravity aboard Kibo on ISS[J]. International Journal of Microgravity Science and Application, 2019, 36(3): 360303
    [9]
    KIMZEY J H. Skylab experiment M479 Zero gravity flammability[C]//Proceedings of the 3rd Space Processing Symposium on Skylab Results. Skylab Results: 1974: 115-130
    [10]
    LI Y J, LIAO Y T T, FERKUL P V, et al. Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity[J]. Combustion and Flame, 2021, 227: 39-51 doi: 10.1016/j.combustflame.2020.12.042
    [11]
    WU C J, HUANG X Y, WANG S F, et al. Opposed flame spread over cylindrical PMMA under oxygen-enriched microgravity environment[J]. Fire Technology, 2020, 56(1): 71-89 doi: 10.1007/s10694-019-00896-8
    [12]
    王双峰, 尹永利. 卫星搭载聚氨酯泡沫闷烧实验[J]. 空间科学学报, 2008, 28(1): 22-27 doi: 10.11728/cjss2008.01.022

    WANG Shuangfeng, YIN Yongli. Microgravity smoldering combustion experiments aboard the China recoverable satellite SJ-8[J]. Chinese Journal of Space Science, 2008, 28(1): 22-27 doi: 10.11728/cjss2008.01.022
    [13]
    杨斌, 齐宗满, 杨荟楠, 等. 基于TDLAS的燃烧流场速度测量方法[J]. 燃烧科学与技术, 2015, 21(6): 516-520

    YANG Bin, QI Zongman, YANG Huinan, et al. Velocity measurement method based on TDLAS for combustion flow[J]. Journal of Combustion Science and Technology, 2015, 21(6): 516-520
    [14]
    张振忠, 孔文俊, 张华良. 空间站燃烧科学实验系统设计[J]. 空间科学学报, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072

    ZHANG Zhenzhong, KONG Wenjun, ZHANG Hualiang. Design of combustion science experimental system for China space station[J]. Chinese Journal of Space Science, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072
    [15]
    王振南, 张扬, 吴玉新, 等. PIV对射流煤粉火焰流场特性的分析[J]. 工程热物理学报, 2015, 36(6): 1356-1359

    WANG Zhennan, ZHANG Yang, WU Yuxin, et al. Analysis on flow field of coal jet flame using PIV[J]. Journal of Engineering Thermophysics, 2015, 36(6): 1356-1359
    [16]
    李志平. 激光粒子图像测量中示踪粒子特性及实验方法研究[D]. 天津: 天津大学, 2007

    LI Zhiping. Research on the Features of Particle Tracers and Experimental Technique of Laser Particle Image Measurement[D]. Tianjin: Tianjin University, 2007
    [17]
    唐春晓. 基于多光谱成像的数字粒子图像测速技术研究[D]. 天津: 天津大学, 2010

    TANG Chunxiao. Study of Digital Particle Image Velocimetry Based on Multispectral Imaging[D]. Tianjin: Tianjin University, 2010
    [18]
    平浚. 射流理论基础及应用[M]. 北京: 宇航出版社, 1995

    PING Jun. Theoretical Basis and Application of Jet[M]. Beijing: Astronautic Publishing, 1995
    [19]
    赵伟伟, 张栋, 史强, 等. 焙烧温度对TiO2粉末的微结构及光催化特性的影响[J]. 中国科技信息, 2011(19): 72-73

    ZHAO Weiwei, ZHANG Dong, SHI Qiang, et al. Effect of calcination temperature on the structure and photocatalytic properties of TiO2 powder[J]. China Science and Technology Information, 2011(19): 72-73
    [20]
    特纳斯. 燃烧学导论: 概念与应用[M]. 姚强, 李水清, 王宇, 译. 3版. 北京: 清华大学出版社, 2015

    TURNS S R. An Introduction to Combustion: Concepts and Applications[M]. YAO Qiang, LI Shuiqing, WANG Yu, trans. 3rd ed. Beijing: Tsinghua University Press, 2015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article Views(264) PDF Downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return