Volume 42 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
TANG Yongkang, SHEN Yunze, AI Weidang, WU Zhiqiang, MAO Ruixin, WU Hao, HU Wei, FENG Hongqi. Effects of Different Particle Sizes on the Bulk Density, Porosity Character, Water Suction of Substrates (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1161-1170 doi: 10.11728/cjss2022.06.220125009
Citation: TANG Yongkang, SHEN Yunze, AI Weidang, WU Zhiqiang, MAO Ruixin, WU Hao, HU Wei, FENG Hongqi. Effects of Different Particle Sizes on the Bulk Density, Porosity Character, Water Suction of Substrates (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1161-1170 doi: 10.11728/cjss2022.06.220125009

Effects of Different Particle Sizes on the Bulk Density, Porosity Character, Water Suction of Substrates

doi: 10.11728/cjss2022.06.220125009
  • Received Date: 2022-01-21
  • Accepted Date: 2022-06-21
  • Rev Recd Date: 2022-10-16
  • Available Online: 2022-11-30
  • To study the effects of different particle sizes on the bulk density, porosity character, water suction of substrates and select suitable substrate combinations for higher plants cultivation in space. Four substrates including profile particle (P), black ceramic particle (B), white ceramic particle (W), and vermiculite (V) were selected, and 10 kinds of particle size combinations (volume percent) are set, in which basic physicochemical character, bulk density, porosity character and water suction were tested. The bulk density of P and B substrates was 0.70 g·cm–3 and there were many minerals in P substrate. The bulk density, Total Porosity (TP) and Water Holding Porosity (WHP) of different substrate combinations increased significantly (p < 0.05) with the increase of proportion of < 1 mm particle size of substrates, but not for Air Porosity (AP). In the 10 kinds of substrate combinations, there were the highest total porosity for P7 (40-60-0) , B8 (10-70-20) and W4 (10-60-30), the highest water air ratio for P8 (10-70-20), B1 (20-50-30) and W8 (10-70-20), the highest adsorption water volume for P3 (50-50-0), B3 (50-50-0) and W3 (50-50-0). The order of average total porosities of 4 kinds of substrates was V> P> B> W. There are moderate bulk density, good porosity character and higher water suction for the P3(50-50-0) and B7 (40-60-0) substrates, which are suitable for plants cultivation in space.

     

  • loading
  • [1]
    WHEELER R M, STUTTE G W, YORIO N C, et al. Plant growth and human life support for space travel[R]. In: PESSARAKLI M (ed), Handbook of Plant and Crop Physiology, 2 nd ed. New York: Marcel Dekker Inc, 2001, 925-941
    [2]
    ZABEL P, BAMSEY M, SCHUBERT D, et al. Review and analysis of over 40 years of space plant growth systems[J]. Life Sciences in Space Research, 2016, 10: 1-16 doi: 10.1016/j.lssr.2016.06.004
    [3]
    MORROW R C, RICHTER, R C, TELLEZ G. A new plant habitat facility for the ISS[R]. 46th International Conference on Environmental Systems, Vienna, Austria. 2016, No. ICES–2016-320
    [4]
    陈瑜, 鹿金颖, 李华盛, 等. 空间环境和模拟微重力环境下番茄试管苗的开花结实实验[J]. 航天医学与医学工程, 2013, 26(3): 239-242 doi: 10.16289/j.cnki.1002-0837.2013.03.009

    CHEN Yu, LU Jinying, LI Huasheng, et al. Experiments of tomato plantlet flowering and fructification in space and simulated microgravity environments[J]. Space Medicine & Medical Engineering, 2013, 26(3): 239-242 doi: 10.16289/j.cnki.1002-0837.2013.03.009
    [5]
    In Chinese (唐永康, 吴志强, 董文平, 等. 空间植物栽培技术分析与思考[J]. 植物生理学报, 2020, 56(1): 1-10 doi: 10.13592/j.cnki.ppj.2019.0012

    TANG Yongkang, WU Zhiqiang, DONG Wenping, et al. Analysis and review on plant cultivation techniques in space[J]. Plant Physiology Journal, 2020, 56(1): 1-10 doi: 10.13592/j.cnki.ppj.2019.0012
    [6]
    HOEHN A, SCOVAZZO P and STODIECK L S. Microgravity root zone hydration systems[R]. SAE Technical Paper Series, 2000, 2000-01-2510
    [7]
    STEINBERG S L, KLUITENBERG G J, JONES S B, et al. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium[J]. Journal of the American Society for Horticulture Science, 2005, 130(5): 767-774 doi: 10.21273/JASHS.130.5.767
    [8]
    SHEN Y Z, GUO S S, ZHAO P S, et al. Research on lettuce growth technology onboard Chinese Tiangong Ⅱ Spacelab[J]. Acta Astronautica, 2018, 144: 97-102 doi: 10.1016/j.actaastro.2017.11.007
    [9]
    郭双生. 空间高等植物栽培根部基质的筛选研究[J]. 航天医学与医学工程, 2004, 17(2): 93-97 doi: 10.3969/j.issn.1002-0837.2004.02.004

    GUO Shuangsheng. Selection of root-zone media for higher plant cultivation in Space[J]. Space Medicine & Medical Engineering, 2004, 17(2): 93-97 doi: 10.3969/j.issn.1002-0837.2004.02.004
    [10]
    ADAMS C, JACOBSON A, BUGBEE B. Ceramic aggregate sorption and desorption chemistry: implications for use as a component of soilless media[J]. Journal of Plant Nutrition, 2014, 37: 1345-1357 doi: 10.1080/01904167.2013.837921
    [11]
    高坚, 唐永康, 吴志强, 等. 空间栽培基质筛选及对莴苣生长的影响[J]. 航天医学与医学工程, 2020, 33(5): 440-448 doi: 10.16289/j.cnki.1002-0837.2020.05.011

    GAO Jian, TANG Yongkang, WU Zhiqiang, et al. Selections and effects of substrates on lettuce growth in CELSS[J]. Space Medicine & Medical Engineering, 2020, 33(5): 440-448 doi: 10.16289/j.cnki.1002-0837.2020.05.011
    [12]
    秦新惠. 无土栽培技术[M]. 重庆: 重庆大学出版社, 2016: 46-48

    QIN Xinhui. Soilless Cultivation Techniques[M]. Chongqing: Chongqing University Press, 2016: 46-48
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article Metrics

    Article Views(128) PDF Downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return