Citation: | DONG Xiaolong, LIU Yang, HE Jieying, ZHANG Feng, XU Jian, ZHAO Yuyan, WANG Yu, ZHU Haotian, WANG Yongmei, WANG Wenyu, CAI Zhiming. Venus Volcano Imaging and Climate Explorer Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1047-1059 doi: 10.11728/cjss2022.06.yg33 |
[1] |
STROM R G, SCHABER G G, DAWSON D D. The global resurfacing of Venus[J]. Journal of Geophysical Research: Planets, 1994, 99(E5): 10899-10926 doi: 10.1029/94JE00388
|
[2] |
SVEDHEM H, TITOV D V, TAYLOR F W, et al. Venus as a more Earth-like planet[J]. Nature, 2007, 450(7170): 629-632 doi: 10.1038/nature06432
|
[3] |
PICCIONI G, DROSSART P, SANCHEZ-LAVEGA A, et al. South-polar features on Venus similar to those near the north pole[J]. Nature, 2007, 450(7170): 637-640 doi: 10.1038/nature06209
|
[4] |
BERTAUX J-L, VANDAELE A-C, KORABLEV O, et al. A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO[J]. Nature, 2007, 450(7170): 646-649 doi: 10.1038/nature05974
|
[5] |
LIMAYE S S, MOGUL R, BAINES K H, et al. Way Venus, an astrobiology target[J]. Astrobiology, 2021, 21(10): 1163-1185
|
[6] |
GARVIN J B, GETTY S A, ARNEY G N, et al. Revealing the mysteries of Venus: the DAVINCI mission[J]. The Planetary Science Journal, 2022, 3(5): 117 doi: 10.3847/PSJ/ac63c2
|
[7] |
赵宇鴳, 刘建忠, 邹永廖, 等. 金星探测研究进展与未来展望[J]. 地质学报, 2021, 95(09): 2703-2724 doi: 10.3969/j.issn.0001-5717.2021.09.006
ZHAO Yuyan, LIU Jianzhong, ZOU Yongliao, et al. Progress and future prospects of Venus exploration[J]. Acta Geologica Sinica, 2021, 95(09): 2703-2724 doi: 10.3969/j.issn.0001-5717.2021.09.006
|
[8] |
CAMPBELL D B, HEAD J W, SENSKE D A, et al. Styles of volcanism on Venus: New Arecibo high resolution radar data[J]. Science, 1989, 246(4928): 373-377 doi: 10.1126/science.246.4928.373
|
[9] |
TAYLOR F W. The Scientific Exploration of Venus [M]. Cambridge: Cambridge University Press, 2014
|
[10] |
DROSSART P, MONTMESSIN F. The legacy of Venus express: highlights from the first European planetary mission to Venus[J]. The Astronomy and Astrophysics Review, 2015, 23(1): 1-23 doi: 10.1007/s00159-014-0081-z
|
[11] |
NAKAMURA M, TITOV D, MCGOULDRICK K, et al. Akatsuki at Venus: the first year of scientific operation[J]. Earth, Planets and Space, 2018, 70(1): 1-3 doi: 10.1186/s40623-017-0766-4
|
[12] |
HORINOUCHI T, HAYASHI Y Y, WATANABE S, et al. How waves and turbulence maintain the super-rotation of Venus’ atmosphere[J]. Science, 2020, 368(6489): 405-409 doi: 10.1126/science.aaz4439
|
[13] |
CUI J, GALAND M, COATES A J, et al. Suprathermal electron spectra in the Venus ionosphere [J]. Journal of Geophysical Research: Space Physics, 2011, 116(A4). DOI. org/10.1029/2010 JA016153
|
[14] |
WEI Y, FRAENZ M, DUBININ E, et al. A teardrop-shaped ionosphere at Venus in tenuous solar wind[J]. Planetary and Space Science, 2012, 73(1): 254-261 doi: 10.1016/j.pss.2012.08.024
|
[15] |
ZHANG T, BAUMJOHANN W, RUSSELL C, et al. A statistical study of the low‐altitude ionospheric magnetic fields over the north pole of Venus[J]. Journal of Geophysical Research: Space Physics, 2015, 120(8): 6218-6229 doi: 10.1002/2015JA021153
|
[16] |
WEI D, YANG A, HUANG J. The gravity field and crustal thickness of Venus[J]. Science China Earth Sciences, 2014, 57(9): 2025-2035 doi: 10.1007/s11430-014-4824-5
|
[17] |
XIAO C, LI F, YAN J G, et al. Inversion of Venus internal structure based on geodetic data[J]. Research in Astronomy and Astrophysics, 2020, 20(8): 127 doi: 10.1088/1674-4527/20/8/127
|
[18] |
XU M, WANG Z. A new attitude pointing design for Venus spacecraft[J]. Aerospace Science and Technology, 2014, 39: 325-330 doi: 10.1016/j.ast.2014.09.015
|
[19] |
ZHENG W, HSU H, ZHONG M, et al. Future dedicated Venus-SGG flight mission: accuracy assessment and performance analysis[J]. Advances in Space Research, 2016, 57(1): 459-576 doi: 10.1016/j.asr.2015.08.036
|
[20] |
SMREKAR S E, HENSLEY S, DYAR M, et al. VERITAS (Venus emissivity, radio science, InSAR, topography, and spectroscopy): a proposed discovery mission[J]. 2020, 48: 216
|
[21] |
GHAIL R C, HALL D, MASON P J, et al. VenSAR on EnVision: taking earth observation radar to Venus[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 365-376 doi: 10.1016/j.jag.2017.02.008
|
[22] |
FILIBERTO J, TRANG D, TREIMAN A H, et al. Present-day volcanism on Venus as evidenced from weathering rates of olivine[J]. Science Advances, 2020, 6(1): eaax7445 doi: 10.1126/sciadv.aax7445
|
[23] |
GüLCHER A J, GERYA T V, MONTéSI L G, et al. Corona structures driven by plume– lithosphere interactions and evidence for ongoing plume activity on Venus[J]. Nature Geoscience, 2020, 13(8): 547-54 doi: 10.1038/s41561-020-0606-1
|
[24] |
SHALYGIN E V, MARKIEWICZ W J, BASILEVSKY A T, et al. Active volcanism on Venus in the Ganiki Chasma rift zone[J]. Geophysical Research Letters, 2015, 42(12): 4762 doi: 10.1002/2015GL064088
|
[25] |
MARCQ E, AMINE I, DUQUESNOY M, et al. Evidence for SO2 latitudinal variations below the clouds of Venus[J]. Astronomy & Astrophysics, 2021, 648: L8
|
[26] |
BéZARD B, DE BERGH C. Composition of the atmosphere of Venus below the clouds[J]. Journal of Geophysical Research: Planets, 2007, 112(E4). DOI. org/10.1029/2006JE002794
|
[27] |
ANDO H, TAKAGI M, SUGIMOTO N, et al. Venusian cloud distribution simulated by a general circulation model[J]. Journal of Geophysical Research: Planets, 2020, 125(7): e2019JE006208
|
[28] |
TITOV D V, IGNATIEV N I, MCGOULDRICK K, et al. Clouds and hazes of Venus[J]. Space Science Reviews, 2018, 214(8): 1-61
|
[29] |
LIMAYE S S, GRASSI D, MAHIEUX A, et al. Venus atmospheric thermal structure and radiative balance[J]. Space Science Reviews, 2018, 214(5): 1-71
|
[30] |
TAYLOR F W, SVEDHEM H, HEAD J W. Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-like planet[J]. Space Science Reviews, 2018, 214(1): 1-36 doi: 10.1007/s11214-017-0435-8
|
[31] |
VANDAELE A C, KORABLEV O, BELYAEV D, et al. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability[J]. Icarus, 2017, 295: 16-33 doi: 10.1016/j.icarus.2017.05.003
|
[32] |
VANDAELE A C, KORABLEV O, BELYAEV D, et al. Sulfur dioxide in the Venus Atmosphere: II. Spatial and temporal variability[J]. Icarus, 2017, 295: 1-15 doi: 10.1016/j.icarus.2017.05.001
|
[33] |
HAUS R, KAPPEL D, TELLMANN S, et al. Radiative energy balance of Venus based on improved models of the middle and lower atmosphere[J]. Icarus, 2016, 272: 178-205 doi: 10.1016/j.icarus.2016.02.048
|
[34] |
BAINS W, PETKOWSKI J J, RIMMER P B, et al. Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies[J]. Proceedings of the National Academy of Sciences, 2021, 118(52): e2110889118 doi: 10.1073/pnas.2110889118
|
[35] |
GREAVES J S, RICHARDS A, BAINS W, et al. Phosphine gas in the cloud decks of Venus[J]. Nature Astronomy, 2021, 5(7): 655-64 doi: 10.1038/s41550-020-1174-4
|
[36] |
PETTENGILL G H, FORD P G, JOHNSON W T, et al. Magellan: Radar performance and data products[J]. Science, 1991, 252(5003): 260-265 doi: 10.1126/science.252.5003.260
|
[37] |
PERALTA J, LEE Y J, MCGOULDRICK K, et al. Overview of useful spectral regions for Venus: An update to encourage observations complementary to the Akatsuki mission[J]. Icarus, 2017, 288: 235-239 doi: 10.1016/j.icarus.2017.01.027
|
[38] |
TITOV D V, BULLOCK M A, CRISP D, et al. Radiation in the atmosphere of Venus[J]. Geophysical Monograph-American Geophysical Union, 2007, 176: 121
|