Volume 42 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
DONG Xiaolong, LIU Yang, HE Jieying, ZHANG Feng, XU Jian, ZHAO Yuyan, WANG Yu, ZHU Haotian, WANG Yongmei, WANG Wenyu, CAI Zhiming. Venus Volcano Imaging and Climate Explorer Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1047-1059 doi: 10.11728/cjss2022.06.yg33
Citation: DONG Xiaolong, LIU Yang, HE Jieying, ZHANG Feng, XU Jian, ZHAO Yuyan, WANG Yu, ZHU Haotian, WANG Yongmei, WANG Wenyu, CAI Zhiming. Venus Volcano Imaging and Climate Explorer Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1047-1059 doi: 10.11728/cjss2022.06.yg33

Venus Volcano Imaging and Climate Explorer Mission

doi: 10.11728/cjss2022.06.yg33 cstr: 32142.14.cjss2022.06.yg33
  • Received Date: 2022-11-21
  • Rev Recd Date: 2022-11-25
  • Available Online: 2022-12-01
  • Venus Volcano Imaging and Climate Explorer (VOICE) is an orbiting mission to investigate the Venusian volcanic and thermal evolution history, water and plate tectonics, internal structure and dynamics, climate evolution, possible habitable environment and life information in the clouds. Three state-of-the-art scientific payloads, the Polarimetric Synthetic Aperture Radar (PolSAR), the Microwave Radiometric Sounder (MWRS) and the Ultraviolet-Visible-Near Infrared Multi-Spectral Imager (UVN-MSI), will be flown on a polar-circular orbit of about 350 km. The PolSAR with meter resolution surface imaging capability enables refined exploration of Venusian tectonic and volcanic activity and evolution history. The MWRS, with a combination of a nadir-looking module and a limb-looking module, has the capability to refine the thermal structure and composition of the Venusian atmosphere, including near surface, below-inside and above the clouds, and will reveal the exchange and interaction between the surface and lower atmosphere. The MWRS will also investigate biosignatures, such as PH3 and NH3, in the cloud to further the fundamental scientific questions on the habitable environment and life information in Venus' atmosphere. The UVN-MSI can map the global atmosphere and look through the atmosphere with NIR windows. With combined observations by MWRS and UVN-MSI, our understanding of the atmospheric composition and climate evolution of Venus can be greatly improved. The scientific objective of the VOICE mission is to advance the understanding of the geological and thermal history and evolution of Venus, the mechanisms of the global circulation of Venusian atmosphere, past and current habitable environments, and the possible existence of life in the clouds of Venus. Through the combination of the state of art of payloads and technologies, the mission goals are to search for evidence of water and plate tectonic activities, reveal the type of volcanic activity and thermal evolution history of Venus; establish the composition and thermal structure of middle and lower atmosphere of Venus, and break through the understanding of Venusian atmospheric and climatic evolution; reveal the mechanism of runaway greenhouse effect, and explore whether Venus has a habitable environment and whether life (once) existed.

     

  • loading
  • [1]
    STROM R G, SCHABER G G, DAWSON D D. The global resurfacing of Venus[J]. Journal of Geophysical Research: Planets, 1994, 99(E5): 10899-10926 doi: 10.1029/94JE00388
    [2]
    SVEDHEM H, TITOV D V, TAYLOR F W, et al. Venus as a more Earth-like planet[J]. Nature, 2007, 450(7170): 629-632 doi: 10.1038/nature06432
    [3]
    PICCIONI G, DROSSART P, SANCHEZ-LAVEGA A, et al. South-polar features on Venus similar to those near the north pole[J]. Nature, 2007, 450(7170): 637-640 doi: 10.1038/nature06209
    [4]
    BERTAUX J-L, VANDAELE A-C, KORABLEV O, et al. A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO[J]. Nature, 2007, 450(7170): 646-649 doi: 10.1038/nature05974
    [5]
    LIMAYE S S, MOGUL R, BAINES K H, et al. Way Venus, an astrobiology target[J]. Astrobiology, 2021, 21(10): 1163-1185
    [6]
    GARVIN J B, GETTY S A, ARNEY G N, et al. Revealing the mysteries of Venus: the DAVINCI mission[J]. The Planetary Science Journal, 2022, 3(5): 117 doi: 10.3847/PSJ/ac63c2
    [7]
    赵宇鴳, 刘建忠, 邹永廖, 等. 金星探测研究进展与未来展望[J]. 地质学报, 2021, 95(09): 2703-2724 doi: 10.3969/j.issn.0001-5717.2021.09.006

    ZHAO Yuyan, LIU Jianzhong, ZOU Yongliao, et al. Progress and future prospects of Venus exploration[J]. Acta Geologica Sinica, 2021, 95(09): 2703-2724 doi: 10.3969/j.issn.0001-5717.2021.09.006
    [8]
    CAMPBELL D B, HEAD J W, SENSKE D A, et al. Styles of volcanism on Venus: New Arecibo high resolution radar data[J]. Science, 1989, 246(4928): 373-377 doi: 10.1126/science.246.4928.373
    [9]
    TAYLOR F W. The Scientific Exploration of Venus [M]. Cambridge: Cambridge University Press, 2014
    [10]
    DROSSART P, MONTMESSIN F. The legacy of Venus express: highlights from the first European planetary mission to Venus[J]. The Astronomy and Astrophysics Review, 2015, 23(1): 1-23 doi: 10.1007/s00159-014-0081-z
    [11]
    NAKAMURA M, TITOV D, MCGOULDRICK K, et al. Akatsuki at Venus: the first year of scientific operation[J]. Earth, Planets and Space, 2018, 70(1): 1-3 doi: 10.1186/s40623-017-0766-4
    [12]
    HORINOUCHI T, HAYASHI Y Y, WATANABE S, et al. How waves and turbulence maintain the super-rotation of Venus’ atmosphere[J]. Science, 2020, 368(6489): 405-409 doi: 10.1126/science.aaz4439
    [13]
    CUI J, GALAND M, COATES A J, et al. Suprathermal electron spectra in the Venus ionosphere [J]. Journal of Geophysical Research: Space Physics, 2011, 116(A4). DOI. org/10.1029/2010 JA016153
    [14]
    WEI Y, FRAENZ M, DUBININ E, et al. A teardrop-shaped ionosphere at Venus in tenuous solar wind[J]. Planetary and Space Science, 2012, 73(1): 254-261 doi: 10.1016/j.pss.2012.08.024
    [15]
    ZHANG T, BAUMJOHANN W, RUSSELL C, et al. A statistical study of the low‐altitude ionospheric magnetic fields over the north pole of Venus[J]. Journal of Geophysical Research: Space Physics, 2015, 120(8): 6218-6229 doi: 10.1002/2015JA021153
    [16]
    WEI D, YANG A, HUANG J. The gravity field and crustal thickness of Venus[J]. Science China Earth Sciences, 2014, 57(9): 2025-2035 doi: 10.1007/s11430-014-4824-5
    [17]
    XIAO C, LI F, YAN J G, et al. Inversion of Venus internal structure based on geodetic data[J]. Research in Astronomy and Astrophysics, 2020, 20(8): 127 doi: 10.1088/1674-4527/20/8/127
    [18]
    XU M, WANG Z. A new attitude pointing design for Venus spacecraft[J]. Aerospace Science and Technology, 2014, 39: 325-330 doi: 10.1016/j.ast.2014.09.015
    [19]
    ZHENG W, HSU H, ZHONG M, et al. Future dedicated Venus-SGG flight mission: accuracy assessment and performance analysis[J]. Advances in Space Research, 2016, 57(1): 459-576 doi: 10.1016/j.asr.2015.08.036
    [20]
    SMREKAR S E, HENSLEY S, DYAR M, et al. VERITAS (Venus emissivity, radio science, InSAR, topography, and spectroscopy): a proposed discovery mission[J]. 2020, 48: 216
    [21]
    GHAIL R C, HALL D, MASON P J, et al. VenSAR on EnVision: taking earth observation radar to Venus[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 365-376 doi: 10.1016/j.jag.2017.02.008
    [22]
    FILIBERTO J, TRANG D, TREIMAN A H, et al. Present-day volcanism on Venus as evidenced from weathering rates of olivine[J]. Science Advances, 2020, 6(1): eaax7445 doi: 10.1126/sciadv.aax7445
    [23]
    GüLCHER A J, GERYA T V, MONTéSI L G, et al. Corona structures driven by plume– lithosphere interactions and evidence for ongoing plume activity on Venus[J]. Nature Geoscience, 2020, 13(8): 547-54 doi: 10.1038/s41561-020-0606-1
    [24]
    SHALYGIN E V, MARKIEWICZ W J, BASILEVSKY A T, et al. Active volcanism on Venus in the Ganiki Chasma rift zone[J]. Geophysical Research Letters, 2015, 42(12): 4762 doi: 10.1002/2015GL064088
    [25]
    MARCQ E, AMINE I, DUQUESNOY M, et al. Evidence for SO2 latitudinal variations below the clouds of Venus[J]. Astronomy & Astrophysics, 2021, 648: L8
    [26]
    BéZARD B, DE BERGH C. Composition of the atmosphere of Venus below the clouds[J]. Journal of Geophysical Research: Planets, 2007, 112(E4). DOI. org/10.1029/2006JE002794
    [27]
    ANDO H, TAKAGI M, SUGIMOTO N, et al. Venusian cloud distribution simulated by a general circulation model[J]. Journal of Geophysical Research: Planets, 2020, 125(7): e2019JE006208
    [28]
    TITOV D V, IGNATIEV N I, MCGOULDRICK K, et al. Clouds and hazes of Venus[J]. Space Science Reviews, 2018, 214(8): 1-61
    [29]
    LIMAYE S S, GRASSI D, MAHIEUX A, et al. Venus atmospheric thermal structure and radiative balance[J]. Space Science Reviews, 2018, 214(5): 1-71
    [30]
    TAYLOR F W, SVEDHEM H, HEAD J W. Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-like planet[J]. Space Science Reviews, 2018, 214(1): 1-36 doi: 10.1007/s11214-017-0435-8
    [31]
    VANDAELE A C, KORABLEV O, BELYAEV D, et al. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability[J]. Icarus, 2017, 295: 16-33 doi: 10.1016/j.icarus.2017.05.003
    [32]
    VANDAELE A C, KORABLEV O, BELYAEV D, et al. Sulfur dioxide in the Venus Atmosphere: II. Spatial and temporal variability[J]. Icarus, 2017, 295: 1-15 doi: 10.1016/j.icarus.2017.05.001
    [33]
    HAUS R, KAPPEL D, TELLMANN S, et al. Radiative energy balance of Venus based on improved models of the middle and lower atmosphere[J]. Icarus, 2016, 272: 178-205 doi: 10.1016/j.icarus.2016.02.048
    [34]
    BAINS W, PETKOWSKI J J, RIMMER P B, et al. Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies[J]. Proceedings of the National Academy of Sciences, 2021, 118(52): e2110889118 doi: 10.1073/pnas.2110889118
    [35]
    GREAVES J S, RICHARDS A, BAINS W, et al. Phosphine gas in the cloud decks of Venus[J]. Nature Astronomy, 2021, 5(7): 655-64 doi: 10.1038/s41550-020-1174-4
    [36]
    PETTENGILL G H, FORD P G, JOHNSON W T, et al. Magellan: Radar performance and data products[J]. Science, 1991, 252(5003): 260-265 doi: 10.1126/science.252.5003.260
    [37]
    PERALTA J, LEE Y J, MCGOULDRICK K, et al. Overview of useful spectral regions for Venus: An update to encourage observations complementary to the Akatsuki mission[J]. Icarus, 2017, 288: 235-239 doi: 10.1016/j.icarus.2017.01.027
    [38]
    TITOV D V, BULLOCK M A, CRISP D, et al. Radiation in the atmosphere of Venus[J]. Geophysical Monograph-American Geophysical Union, 2007, 176: 121
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article Views(1715) PDF Downloads(227) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return