| Citation: | HUANG Jin, CHANG Liang, DONG Baiyang, LIU Zeyu, HAN Shengxing, SI Chaoming. Development on Space Environment and Its Dynamic and Thermal Problems of Ultra-LEO Satellites (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 711-723 doi: 10.11728/cjss2023.04.2022-0010 |
| [1] |
CRISP N, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences, 2020, 117: 100619 doi: 10.1016/j.paerosci.2020.100619
|
| [2] |
王彩云, 廖文和. 隐身卫星的现状及其在空间攻防中的应用[J]. 航天电子对抗, 2011, 27(4): 17-19
WANG Caiyun, LIAO Wenhe. Development status and application in space attack-defense of stealthy satellite[J]. Aerospace Electronic Warfare, 2011, 27(4): 17-19
|
| [3] |
CRISP N H, ROBERTS P C E, ROMANO F, et al. System modelling of very low Earth orbit satellites for Earth observation[J]. Acta Astronautica, 2021, 187: 475-491 doi: 10.1016/j.actaastro.2021.07.004
|
| [4] |
吕久明, 路建功, 刁晶晶, 等. 超低轨道卫星技术发展现状及应用[J]. 国防科技, 2020, 41(1): 33-37
LV Jiuming, LU Jiangong, DIAO Jingjing, et al. The status quo of ultra-low altitude satellite technology and its future use[J]. National Defense Science Technology, 2020, 41(1): 33-37
|
| [5] |
KIMOTO Y, YUKUMATSU K, GOTO A, et al. MDM: A flight mission to observe materials degradation in-situ on satellite in super low Earth orbit[J]. Acta Astronautica, 2021, 179: 695-701 doi: 10.1016/j.actaastro.2020.11.048
|
| [6] |
COESA. USA standard atmosphere 1976[R]. Washington D C: USA Government Printing Office, 1976
|
| [7] |
JACCHIA L G. Static diffusion models of the upper atmosphere with empirical temperature profiles[J]. Smithsonian Contributions to Astrophysics, 1965, 8(9): 213-257 doi: 10.5479/si.00810231.8-9.213
|
| [8] |
CHAO C C, GUNNING G R, MOE K, et al. An evaluation of Jacchia 71 and MSIS90 atmosphere models with NASA oderacs decay data[J]. The Journal of the Astronautical Sciences, 1997, 45(2): 131-141 doi: 10.1007/BF03546372
|
| [9] |
PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA 15-1-SIA 15-16
|
| [10] |
EMMERT J T, DROB D P, PICONE J M, et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 2021, 8(3): e2020EA001321
|
| [11] |
BOWMAN B R, TOBISKA W, MARCOS F A. A new empirical thermospheric density model JB2006 using new solar indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone: AIAA, 2006
|
| [12] |
BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5: A1 doi: 10.1051/swsc/2015001
|
| [13] |
靳旭红, 黄飞, 程晓丽, 等. 超低地球轨道卫星大气阻力预测与影响因素分析[J]. 清华大学学报(自然科学版), 2020, 60(3): 219-226
JIN Xuhong, HUANG Fei, CHENG Xiaoli, et al. Atmospheric drag on satellites flying in lower low-earth orbit[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3): 219-226
|
| [14] |
DOORNBOS E. Thermospheric Density and Wind Determination from Satellite Dynamics[M]. Berlin, Heidelberg: Springer, 2012
|
| [15] |
BRUINSMA S, BIANCALE R. Total densities derived from accelerometer data[J]. Journal of Spacecraft and Rockets, 2003, 40(2): 230-236 doi: 10.2514/2.3937
|
| [16] |
PICONE J M, EMMERT J T, LEAN J L. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A3): A03301
|
| [17] |
MOE K, MOE M M. Gas-surface interactions and satellite drag coefficients[J]. Planetary and Space Science, 2005, 53(8): 793-801 doi: 10.1016/j.pss.2005.03.005
|
| [18] |
BIRD G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963, 6(10): 1518-1519 doi: 10.1063/1.1710976
|
| [19] |
BIRD G A. Application of the direct simulation Monte Carlo method to the full shuttle geometry[C]//5th Joint Thermophysics and Heat Transfer Conference. Seattle: AIAA, 1990
|
| [20] |
王丹. 飞行器气动外形优化设计方法研究与应用[D]. 西安: 西北工业大学, 2015
WANG Dan. Approache and Application Research on Aerodynamic Shape Optimization Design[D]. Xi’an: Northwestern Polytechnical University, 2015
|
| [21] |
周伟勇, 张育林, 刘昆. 超低轨航天器气动力分析与减阻设计[J]. 宇航学报, 2010, 31(2): 342-348 doi: 10.3873/j.issn.1000-1328.2010.02.007
ZHOU Weiyong, ZHANG Yulin, LIU Kun. Aerodynamics analysis and reduced drag design for the lower LEO spacecraft[J]. Journal of Astronautics, 2010, 31(2): 342-348 doi: 10.3873/j.issn.1000-1328.2010.02.007
|
| [22] |
胡凌云, 张立华, 程晓丽, 等. 超低轨航天器气动设计与计算方法探讨[J]. 航天器工程, 2016, 25(1): 10-18
HU Lingyun, ZHANG Lihua, CHENG Xiaoli, et al. Method of aerodynamic design and calculation for ultra-LEO spacecraft[J]. Spacecraft Engineering, 2016, 25(1): 10-18
|
| [23] |
曾其鋆. 气动力矩在超低轨道卫星姿态控制方面的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2009
ZENG Qiyun. Applications of Aerodynamic Torque to Ultra-Low-Orbit Satellite Attitude Control[D]. Harbin: Harbin Institute of Technology, 2009
|
| [24] |
吴宏鑫, 谈树萍. 航天器控制的现状与未来[J]. 空间控制技术与应用, 2012, 38(5): 1-7
WU Hongxin, TAN Shuping. Spacecraft control: present and future[J]. Aerospace Control and Application, 2012, 38(5): 1-7
|
| [25] |
SCHLANBUSCH R, LORIA A, KRISTIANSEN R, et al. PD+ based output feedback attitude control of rigid bodies[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2146-2152 doi: 10.1109/TAC.2012.2183189
|
| [26] |
LAMBERT C, KUMAR B S, HAMEL J F, et al. Implementation and performance of formation flying using differential drag[J]. Acta Astronautica, 2012, 71: 68-82 doi: 10.1016/j.actaastro.2011.08.013
|
| [27] |
WISSINK J G. DNS of separating, low reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow, 2003, 24(4): 626-635 doi: 10.1016/S0142-727X(03)00056-0
|
| [28] |
RASKY D J, MILOS F S, SQUIRE T H. Thermal protection system materials and costs for future reusable launch vehicles[J]. Journal of Spacecraft and Rockets, 2001, 38(2): 294-296 doi: 10.2514/2.3686
|
| [29] |
MARSHALL L, CORPENING G, SHERRILL R. A chief engineer’s view of the NASA X-43 A scramjet flight test[C]//AIAA/CIRA 13 th International Space Planes and Hypersonics Systems and Technologies Conference. Capua: AIAA, 2005
|
| [30] |
贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1): 77-80,90 doi: 10.3969/j.issn.1007-2330.2016.01.013
JIA Xianfeng, LIU Xuhua, QIAO Wenming, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology, 2016, 46(1): 77-80,90 doi: 10.3969/j.issn.1007-2330.2016.01.013
|
| [31] |
黄文宣, 邱慧, 刘峰, 等. 深空探测器防热承力一体化大底结构研究[J]. 航天返回与遥感, 2019, 40(6): 19-25
HUANG Wenxuan, QIU Hui, LIU Feng, et al. Research on thermal-structural integrated heatshield structure for deep space explorer[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(6): 19-25
|
| [32] |
BAPANAPALLI S K, MARTINEZ O, GOGU C, et al. Analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles[C]//47 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island: AIAA, 2006
|
| [33] |
贾芳, 冀晓鹃, 彭浩然, 等. 发射率可变的智能热控涂层研究进展[J]. 热喷涂技术, 2017, 9(2): 9-16
JIA Fang, JI Xiaojuan, PENG Haoran, et al. The development of variable emissivity smart thermal control coating[J]. Thermal Spray Technology, 2017, 9(2): 9-16
|
| [34] |
郭亮, 张旭升, 黄勇, 等. 空间热开关在航天器热控制中的应用与发展[J]. 光学 精密工程, 2015, 23(1): 216-229 doi: 10.3788/OPE.20152301.0216
GUO Liang, ZHANG Xusheng, HUANG Yong, et al. Applications and development of space heat switches in spacecraft thermal control[J]. Optics and Precision Engineering, 2015, 23(1): 216-229 doi: 10.3788/OPE.20152301.0216
|
| [35] |
刘欣, 梁新刚. 可展开式辐射器热控对航天器轨道调整的适应性分析[J]. 宇航学报, 2021, 42(3): 390-396 doi: 10.3873/j.issn.1000-1328.2021.03.014
LIU Xin, LIANG Xingang. Adaptability analysis of deployable radiator thermal control system to spacecraft orbit adjustment[J]. Journal of Astronautics, 2021, 42(3): 390-396 doi: 10.3873/j.issn.1000-1328.2021.03.014
|