Volume 43 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
YU Daochun, LI Haitao, LI Baoquan, LIU Yaning. Methods of Planetary Atmospheric Density Retrieval Based on X-ray Occultation (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 661-669 doi: 10.11728/cjss2023.04.2022-0027
Citation: YU Daochun, LI Haitao, LI Baoquan, LIU Yaning. Methods of Planetary Atmospheric Density Retrieval Based on X-ray Occultation (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 661-669 doi: 10.11728/cjss2023.04.2022-0027

Methods of Planetary Atmospheric Density Retrieval Based on X-ray Occultation

doi: 10.11728/cjss2023.04.2022-0027 cstr: 32142.14.cjss2023.04.2022-0027
  • Received Date: 2022-06-09
  • Accepted Date: 2023-06-25
  • Rev Recd Date: 2022-12-28
  • Available Online: 2023-02-13
  • X-ray occultation is a common astronomical phenomenon. The retrieval of atmospheric density based on X-ray occultation sounding is a new method involving interdisciplinary research. This method realizes the inversion of atmospheric density by processing the measured occultation data of high-energy X-ray celestial radiation sources. The basic principle is that when X-rays propagate in the atmosphere, X-ray photons are absorbed and scattered by atoms in the atmosphere (including atoms in molecules), resulting in attenuation of X-ray intensity, and the corresponding density profile is retrieved according to the intensity of the attenuated X-ray signal. This paper briefly introduces the application requirements of X-ray occultation sounding, and focuses on the analysis and demonstration of a new method for retrieving atmospheric density based on X-ray occultation. Firstly, the research progress and methods of atmospheric density retrieval by X-ray occultation sounding are introduced, and two kinds of density retrieval algorithms, light curve fitting and energy spectrum fitting, including the construction of forward model and the selection of likelihood function in parameter estimation, are introduced emphatically. Then, the advantages of atmospheric density retrieval based on X-ray occultation are analyzed and discussed. Finally, the application scenarios of X-ray occultation sounding are prospected. The results show that X-ray occultation sounding, as a new means of measuring the density of the middle and upper atmosphere, can effectively detect the density of the middle and upper atmosphere, and make up the shortage of the current measured data of the middle and upper atmosphere density.

     

  • loading
  • [1]
    BOWYER S, BYRAM E T, CHUBB T A, et al. Lunar occultation of X-ray emission from the Crab Nebula[J]. Science, 1964, 146(3646): 912-917 doi: 10.1126/science.146.3646.912
    [2]
    FUKADA Y, HAYAKAWA S, KASAHARA I, et al. Lunar occultation of the hard X-ray source in the Crab Nebula[J]. Nature, 1975, 255(5508): 465-466 doi: 10.1038/255465a0
    [3]
    HOFFMAN J A, DAVISON P J N, MORRISON L V. Accurate position of GX5-1 from Lunar occultations[J]. Nature, 1973, 244(5415): 347-349 doi: 10.1038/244347a0
    [4]
    WOLFF R S, KESTENBAUM H L, KU W, et al. Measurement of the spiral structure of the X-ray source in the Crab nebula. I. Observation of the 1974 November 3 lunar occultation[J]. The Astrophysical Journal, 1975, 202(1): L15-L19
    [5]
    KESTENBAUM H L, KU W, NOVICK R, et al. Measurement of the spatial structure of the X-Ray source in the Crab Nebula. II. Observation of the 1974 December 28 Lunar occultation[J]. The Astrophysical Journal, 1975, 202(1): L21-L24
    [6]
    RIGGIO A, BURDERI L, DI SALVO T, et al. Subarcsecond location of IGR J17480-2446 with Rossi XTE[J]. The Astrophysical Journal Letters, 2012, 754(1): L11 doi: 10.1088/2041-8205/754/1/L11
    [7]
    BORN E. On the analysis of lunar occultations of point-like X-ray sources[J]. Astrophysics and Space Science, 1979, 63(2): 439-455 doi: 10.1007/BF00638913
    [8]
    ZHANG S N, FISHMAN G J, HARMON B A, et al. Imaging high-energy astrophysical sources using Earth occultation[J]. Nature, 1993, 366(6452): 245-247 doi: 10.1038/366245a0
    [9]
    ZHANG S N, HARMON B A, PACIESAS W S, et al. Deep search for celestial hard X-ray emission by earth occultation with BATSE/CGRO[J]. Astronomy & Astrophysics Supplement Series, 1996, 120(4): 137-140
    [10]
    HARMON B A, WILSON C A, FISHMAN G J, et al. The Burst and Transient Source Experiment (BATSE) Earth occultation catalog of low-Energy Gamma-Ray sources[J]. The Astrophysical Journal Supplement Series, 2004, 154(2): 585-622 doi: 10.1086/421940
    [11]
    WILSON-HODGE C A, CASE G L, CHERRY M L, et al. Three years of Fermi GBM Earth occultation monitoring: observations of hard X-ray/soft gamma-ray sources[J]. The Astrophysical Journal Supplement Series, 2012, 201(2): 33 doi: 10.1088/0067-0049/201/2/33
    [12]
    SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-Ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63 doi: 10.2514/1.13331
    [13]
    WOOD K S. Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite[C]//Proceedings of SPIE 1940, Small Satellite Technology and Applications III. Orlando, FL, United States: SPIE, 1993: 105-116
    [14]
    RISALITI G, ELVIS M, FABBIANO G, et al. Occultation measurement of the size of the X-Ray-emitting region in the Active Galactic Nucleus of NGC 1365[J]. The Astrophysical Journal, 2007, 659(2): L111-L114 doi: 10.1086/517884
    [15]
    TORRICELLI-CIAMPONI G, PIETRINI P, RISALITI P, et al. Search for X-ray occultations in active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 2014, 442(3): 2116-2130 doi: 10.1093/mnras/stu969
    [16]
    ROQUES F, MONCUQUET M. A detection method for small Kuiper belt objects: the search for stellar occultations[J]. Icarus, 2000, 147(2): 530-544 doi: 10.1006/icar.2000.6452
    [17]
    ROQUES F, MONCUQUET M, LAVILLONIÈRE N, et al. A search for small Kuiper Belt Objects by stellar occultations[J]. The Astrophysical Journal, 2003, 594(1): L63-L66 doi: 10.1086/378576
    [18]
    SCHLICHTING H E, OFEK E O, WENZ M, et al. A single sub-kilometre Kuiper belt object from a stellar occultation in archival data[J]. Nature, 2009, 462(7275): 895-897 doi: 10.1038/nature08608
    [19]
    CHANG H K, LIU C Y, CHEN K T. Millisecond dips in the 2007-09 RXTE/PCA light curve of Sco X-1 and one possible occultation event[J]. Monthly Notices of the Royal Astronomical Society, 2011, 411(1): 427-434
    [20]
    CHANG H K, LIU C Y, CHEN K T. Search for serendipitous trans-Neptunian object occultation in X-rays[J]. Monthly Notices of the Royal Astronomical Society, 2013, 429(2): 1626-1632
    [21]
    MORI K, TSUNEMI H, KATAYAMA H, et al. An X-ray measurement of Titan’s atmospheric extent from its transit of the Crab Nebula[J]. The Astrophysical Journal, 2004, 607(2): 1065-1069 doi: 10.1086/383521
    [22]
    POPPENHAEGER K, SCHMITT J H M M, WOLK S J. Transit observations of the Hot Jupiter HD 189733 b at X-ray wavelengths[J]. The Astrophysical Journal, 2013, 773(1): 62 doi: 10.1088/0004-637X/773/1/62
    [23]
    YU D C, LI H T, LI B Q, et al. New method for Earth neutral atmospheric density retrieval based on energy spectrum fitting during occultation with LE/Insight-HXMT[J]. Advances in Space Research, 2022, 69(9): 3426-3434 doi: 10.1016/j.asr.2022.02.030
    [24]
    YU D C, LI H T, LI B Q, et al. Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT[J]. Atmospheric Measurement Techniques, 2022, 15(10): 3141-3159 doi: 10.5194/amt-15-3141-2022
    [25]
    胡雄, 曾桢, 张训械, 等. 大气GPS掩星观测反演方法[J]. 地球物理学报, 2005, 48(4): 768-774 doi: 10.3321/j.issn:0001-5733.2005.04.006

    HU Xiong, ZENG Zhen, ZHANG Xunxie, et al. Atmospheric inversion methods of GPS radio occultation[J]. Chinese Journal of Geophysics, 2005, 48(4): 768-774 doi: 10.3321/j.issn:0001-5733.2005.04.006
    [26]
    DETERMAN J R, BUDZIEN S A, KOWALSKI M P, et al. Measuring atmospheric density with X-ray occultation sounding[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A6): A06323
    [27]
    TUO Y L, LI X B, GE M Y, et al. In-orbit timing calibration of the Insight-Hard X-Ray modulation telescope[J]. The Astrophysical Journal Supplement Series, 2022, 259(1): 14 doi: 10.3847/1538-4365/ac4250
    [28]
    ZHU Y X, LU J B, LI X B, et al. Calibration of the energy response matrix for X-ray detector CCD236[J]. Journal of Instrumentation, 2021, 16(5): P05016 doi: 10.1088/1748-0221/16/05/P05016
    [29]
    NANG Y, LIAO J Y, SAI N, et al. In-orbit calibration to the point-spread function of Insight-HXMT[J]. Journal of High Energy Astrophysics, 2020, 25: 39-47 doi: 10.1016/j.jheap.2020.01.002
    [30]
    LI X B, LI X F, TAN Y, et al. In-flight calibration of the Insight-Hard X-ray modulation telescope[J]. Journal of High Energy Astrophysics, 2020, 27: 64-76 doi: 10.1016/j.jheap.2020.02.009
    [31]
    LU X F, LIU C Z, LI X B, et al. Design and calibration of the high energy particle monitor onboard the Insight-HXMT[J]. Journal of High Energy Astrophysics, 2020, 26: 77-82 doi: 10.1016/j.jheap.2020.02.006
    [32]
    BUDIL D E, LEE S, SAXENA S, et al. Nonlinear-Least-Squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg–Marquardt Algorithm[J]. Journal of Magnetic Resonance, Series A, 1996, 120(2): 155-189 doi: 10.1006/jmra.1996.0113
    [33]
    SHEN J J, BERK D E V, SCHNEIDER D P, et al. The black hole-bulge relationship in luminous broad-line active galactic nuclei and host galaxies[J]. The Astronomical Journal, 2008, 135(3): 928-946 doi: 10.1088/0004-6256/135/3/928
    [34]
    SAKRISON D. Efficient recursive estimation of the parameters of a radar or radio astronomy target[J]. IEEE Transactions on Information Theory, 1966, 12(1): 35-41 doi: 10.1109/TIT.1966.1053855
    [35]
    BOCK R D, AITKIN M. Marginal maximum likelihood estimation of item parameters: application of an EM algorithm[J]. Psychometrika, 1981, 46(4): 443-459 doi: 10.1007/BF02293801
    [36]
    BUCHNER J, GEORGAKAKIS A, NANDRA K, et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: bayesian model selection and catalogue[J]. Astronomy & Astrophysics, 2014, 564: A125
    [37]
    SANDERS N E, SODERBERG A M, GEZARI S, et al. Toward characterization of the type IIP supernova progenitor population: a statistical sample of light curves from Pan-STARRS1[J]. The Astrophysical Journal, 2015, 799(2): 208 doi: 10.1088/0004-637X/799/2/208
    [38]
    CHIB S, GREENBERG E. Understanding the metropolis-hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335
    [39]
    KITZMANN D, HENG K, ORESHENKO M, et al. Helios-r2: a new Bayesian, open-source retrieval model for brown dwarfs and exoplanet atmospheres[J]. The Astrophysical Journal, 2020, 890(2): 174 doi: 10.3847/1538-4357/ab6d71
    [40]
    CASH W. Parameter estimation in astronomy through application of the likelihood ratio[J]. The Astrophysical Journal, 1979, 228: 939-947 doi: 10.1086/156922
    [41]
    NOUSEK J A, SHUE D R. χ2 and C statistic minimization for low count per bin data[J]. The Astrophysical Journal, 1989, 342: 1207 doi: 10.1086/167676
    [42]
    MIGHELL K J. Parameter estimation in astronomy with poisson-distributed data. I. The $ {\chi }_{\gamma }^{2} $ statistic[J]. The Astrophysical Journal, 1999, 19(1): 380-393
    [43]
    LASS J, BØGGILD M E, HEDEGÅRD P, et al. Multinomial, Poisson and Gaussian statistics in count data analysis[J]. Journal of Neutron Research, 2021, 23(1): 69-92 doi: 10.3233/JNR-190145
    [44]
    KATSUDA S, FUJIWARA H, ISHISAKI Y, et al. New measurement of the vertical atmospheric density profile from occultations of the Crab Nebula with X-ray astronomy satellites Suzaku and Hitomi[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028886
    [45]
    ROBLE R G, HAYS P B. A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data[J]. Planetary and Space Science, 1972, 20(10): 1727-1744 doi: 10.1016/0032-0633(72)90194-8
    [46]
    RAHMATI A, LARSON D E, CRAVENS T E, et al. MAVEN SEP observations of Scorpius X-1 X-rays at Mars: a midatmosphere occultation analysis technique[J]. Geophysical Research Letters, 2020, 47(21): e2020 GL088927
    [47]
    LEWIS S R, COLLINS M, READ P L, et al. A climate database for Mars[J]. Journal of Geophysical Research: Planets, 1999, 104(E10): 24177-24194
    [48]
    HINSON D P, SIMPSON R A, TWICKEN J D, et al. Initial results from radio occultation measurements with Mars Global Surveyor[J]. Journal of Geophysical Research:Planets, 1999, 104(E11): 26997-27012 doi: 10.1029/1999JE001069
    [49]
    TELLMANN S, PÄTZOLD M, HÄUSLER B, et al. The structure of Mars lower atmosphere from Mars Express Radio Science (MaRS) occultation measurements[J]. Journal of Geophysical Research:Planets, 2013, 118(2): 306-320 doi: 10.1002/jgre.20058
    [50]
    HINSON D P, ASMAR S W, KAHAN D S, et al. Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: a nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder[J]. Icarus, 2014, 243: 91-103 doi: 10.1016/j.icarus.2014.09.019
    [51]
    FORGET F, MONTMESSIN F, BERTAUX J L, et al. Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM[J]. Journal of Geophysical Research, 2009, 114(E1): E01004
    [52]
    FEDOROVA A A, KORABLEV O I, BERTAUX J L, et al. Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol[J]. Icarus, 2009, 200(1): 96-117 doi: 10.1016/j.icarus.2008.11.006
    [53]
    SANDEL B R, GRÖLLER H, YELLE R V, et al. Altitude profiles of O2 on Mars from SPICAM stellar occultations[J]. Icarus, 2015, 252: 154-160 doi: 10.1016/j.icarus.2015.01.004
    [54]
    OBERHEIDE J, FORBES J M, ZHANG X, et al. Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A11): A11306
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article Views(675) PDF Downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return