Volume 43 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
WANG Wei, ZHANG Jiaojiao, WANG Chi, DENG Xiang, LAN Ailan, YAN Jingye. Comparison of Characteristics of F-region Irregularities Scattering Occurrence Rate Based on the Observation of the Jiamusi Radar and Hokkaido East Radar (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 609-617 doi: 10.11728/cjss2023.04.2022-0028
Citation: WANG Wei, ZHANG Jiaojiao, WANG Chi, DENG Xiang, LAN Ailan, YAN Jingye. Comparison of Characteristics of F-region Irregularities Scattering Occurrence Rate Based on the Observation of the Jiamusi Radar and Hokkaido East Radar (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 609-617 doi: 10.11728/cjss2023.04.2022-0028

Comparison of Characteristics of F-region Irregularities Scattering Occurrence Rate Based on the Observation of the Jiamusi Radar and Hokkaido East Radar

doi: 10.11728/cjss2023.04.2022-0028 cstr: 32142.14.cjss2023.04.2022-0028
  • Received Date: 2022-06-17
  • Accepted Date: 2023-06-25
  • Rev Recd Date: 2022-08-15
  • Available Online: 2023-06-25
  • Distribution of the ionospheric irregularities scattering occurrence rate was investigated using data from March 2018 to November 2019, which were observed by the SuperDARN Jiamusi and Hokkaido East radars. The irregularities scattering occurrence rate have been statistically compared in the geomagnetic quiet period (Kp < 3) and geomagnetic disturbance period (Kp > 3), obtained the variation characteristics of the irregularities scattering occurrence rate depending on magnetic latitude and MLT, and analyzed the characteristics of the occurrence rate enhancement phenomenon in the dusk side and dawn side. The enhancement of the dusk side occurrence rate was widespread in the range of 45°-64° MLAT, and the occurrence rate in the subauroral region was significantly enhanced during the magnetic disturbed period. The enhancement of the dawn side occurrence rate is mainly distributed in areas below 55° MLAT, and the enhancement of the geomagnetic disturbance has a weak effect on it except in equinox. The dayside occurrence rate in middle magnetic latitude is less affected by geomagnetic disturbance.

     

  • loading
  • [1]
    GREENWALD R A, BAKER K B, DUDENEY J R, et al. DARN/SuperDARN: a global view of the dynamics of high-latitude convection[J]. Space Science Reviews, 1995, 71(1): 763-796
    [2]
    CHISHAM G, LESTER M, MILAN S E, et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions[J]. Surveys in Geophysics, 2007, 28(1): 33-109 doi: 10.1007/s10712-007-9017-8
    [3]
    NISHITANI N, RUOHONIEMI J M, LESTER M, et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars[J]. Progress in Earth and Planetary Science, 2019, 6(1): 27 doi: 10.1186/s40645-019-0270-5
    [4]
    刘二小, 胡红桥, 刘瑞源, 等. 中山站高频雷达回波的日变化特征及地磁活动的影响[J]. 地球物理学报, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024

    LIU Erxiao, HU Hongqiao, LIU Ruiyuan, et al. Diurnal variation of the HF radar echoes at Zhongshan Station and the influence of geomagnetic activity[J]. Chinese Journal of Geophysics, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024
    [5]
    HU H Q, LIU E X, LIU R Y, et al. Statistical characteristics of ionospheric backscatter observed by SuperDARN Zhongshan radar in Antarctica[J]. Advances in Polar Science, 2013, 24(1): 19-31
    [6]
    RUOHONIEMI J M, GREENWALD R A, VILLAIN J P, et al. Coherent HF radar backscatter from small-scale irregularities in the dusk sector of the subauroral ionosphere[J]. Journal of Geophysical Research: Space Physics, 1988, 93(A11): 12871-12882 doi: 10.1029/JA093iA11p12871
    [7]
    RUOHONIEMI J M, GREENWALD R A. Rates of scattering occurrence in routine HF radar observations during solar cycle maximum[J]. Radio Science, 1997, 32(3): 1051-1070 doi: 10.1029/97RS00116
    [8]
    MILAN S E, YEOMAN T K, LESTER M, et al. Initial backscatter occurrence statistics from the Cutlass HF radars[J]. Annales Geophysicae, 1997, 15(6): 703-718 doi: 10.1007/s00585-997-0703-0
    [9]
    PARKINSON M L, DEVLIN J C, YE H, et al. On the occurrence and motion of decametre-scale irregularities in the sub-auroral, auroral, and polar cap ionosphere[J]. Annales Geophysicae, 2003, 21(8): 1847-1868 doi: 10.5194/angeo-21-1847-2003
    [10]
    HOSOKAWA K, IYEMORI T, YUKIMATU A S, et al. Source of field-aligned irregularities in the subauroral F region as observed by the SuperDARN radars[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A11): 24713-24731 doi: 10.1029/2001JA900080
    [11]
    KOUSTOV A V, PONOMARENKO P V, GHEZELBASH M, et al. Electron density and electric field over resolute bay and F region ionospheric echo detection with the Rankin Inlet and Inuvik SuperDARN radars[J]. Radio Science, 2014, 49(12): 1194-1205 doi: 10.1002/2014RS005579
    [12]
    HOSOKAWA K, NISHITANI N. Plasma irregularities in the duskside subauroral ionosphere as observed with midlatitude SuperDARN radar in Hokkaido, Japan[J]. Radio Science, 2010, 45(4): RS4003
    [13]
    刘建军, 胡红桥, 陈相材. 2012年南极中山站高频相干散射雷达数据集[J]. 中国科学数据(中英文网络版), 2021, 6(2): 64-72

    LIU Jianjun, HU Hongqiao, CHEN Xiangcai. A dataset from the Zhongshan HF coherent scatter radar in Antarctica (2012)[J]. China Scientific Data, 2021, 6(2): 64-72
    [14]
    ZHANG J J, WANG W, WANG C, et al. First observation of ionospheric convection from the Jiamusi HF radar during a strong geomagnetic storm[J]. Earth and Space Science, 2020, 7(1): e2019EA000911 doi: 10.1029/2019EA000911
    [15]
    邓翔, 阎敬业, 吴季, 等. AgileDARN雷达内定标的方法与实现[J]. 遥感技术与应用, 2019, 34(6): 1221-1226 doi: 10.11873/j.issn.1004-0323.2019.6.1221

    DENG Xiang, YAN Jingye, WU Ji, et al. A method and implementation of internal calibration in AgileDARN HF radar[J]. Remote Sensing Technology and Application, 2019, 34(6): 1221-1226 doi: 10.11873/j.issn.1004-0323.2019.6.1221
    [16]
    BLANCHARD G T, SUNDEEN S, BAKER K B. Probabilistic identification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics[J]. Radio Science, 2009, 44(5): RS5012 doi: 10.1029/2009RS004141
    [17]
    SCHERLIESS L, FEJER B G, HOLT J, et al. Radar studies of midlatitude ionospheric plasma drifts[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A2): 1771-1783 doi: 10.1029/2000JA000229
    [18]
    MAIMAITI M, RUOHONIEMI J M, BAKER J B H, et al. Statistical study of nightside quiet time midlatitude ionospheric convection[J]. Journal of Geophysical Research: Space Physics, 2018, 123(3): 2228-2240 doi: 10.1002/2017JA024903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article Views(604) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return