| Citation: | WANG Yu, ZHANG Xianzhong, WU Tong, ZHANG Yijian, SUN Yue, LI Shijie, LI Xinqi, ZHONG Kai, YAN Zhaoai, XU Degang, YAO Jianquan. Research on Atmospheric Temperature Retrieval Based on Rayleigh Lidar Using Optimal Estimation Method (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 627-639 doi: 10.11728/cjss2023.04.2022-0035 |
| [1] |
HAUCHECORNE A, CHANIN M L. Density and temperature profiles obtained by lidar between 35 and 70 km[J]. Geophysical Research Letters, 1980, 7(8): 565-568 doi: 10.1029/GL007i008p00565
|
| [2] |
刘星, 杨国韬, 王继红, 等. 瑞利激光雷达反演中层大气温度算法[J]. 空间科学学报, 2019, 39(2): 186-190 doi: 10.11728/cjss2019.02.186
LIU Xing, YANG Guotao, WANG Jihong, et al. Retrieval algorithm of middle atmospheric temperature using rayleigh lidar[J]. Chinese Journal of Space Science, 2019, 39(2): 186-190 doi: 10.11728/cjss2019.02.186
|
| [3] |
RODGERS C D. Inverse Methods for Atmospheric Sounding: Theory and Practice[M]. Singapore: World Scientific, 2000
|
| [4] |
MAAHN M, TURNER D D, LÖHNERT U, et al. Optimal estimation retrievals and their uncertainties: what every atmospheric scientist should know[J]. Bulletin of the American Meteorological Society, 2020, 101(9): E1512-E1523 doi: 10.1175/BAMS-D-19-0027.1
|
| [5] |
POVEY A C, GRAINGER R G, PETERS D M, et al. Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation[J]. Atmospheric Measurement Techniques, 2014, 7(3): 757-776 doi: 10.5194/amt-7-757-2014
|
| [6] |
SICA R J, HAEFELE A. Retrieval of temperature from a multiple-channel Rayleigh-scatter lidar using an optimal estimation method[J]. Applied Optics, 2015, 54(8): 1872-1889 doi: 10.1364/AO.54.001872
|
| [7] |
SICA R J, HAEFELE A. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method[J]. Applied Optics, 2016, 55(4): 763-777 doi: 10.1364/AO.55.000763
|
| [8] |
WEITKAMP C. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere[M]. New York: Springer, 2005
|
| [9] |
LEVENBERG K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2(2): 164-168 doi: 10.1090/qam/10666
|
| [10] |
MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441 doi: 10.1137/0111030
|
| [11] |
SICA R J, HAEFELE A, JALALI A, et al. How to apply the optimal estimation method to your lidar measurements for improved retrievals of temperature and composition[J]. EPJ Web of Conferences, 2018, 176: 01025 doi: 10.1051/epjconf/201817601025
|
| [12] |
ARGALL P S. Upper altitude limit for Rayleigh lidar[J]. Annales Geophysicae, 2007, 25(1): 19-25 doi: 10.5194/angeo-25-19-2007
|
| [13] |
PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1468
|
| [14] |
National Geophysical Data Center. U. S. standard atmosphere (1976)[J]. Planetary and Space Science, 1992, 40(4): 553-554
|
| [15] |
CHANDRA S, FLEMING E L, SCHOEBERL M R, et al. Monthly mean global climatology of temperature, wind, geopotential height and pressure for 0-120 km[J]. Advances in Space Research, 1990, 10(6): 3-12 doi: 10.1016/0273-1177(90)90230-W
|
| [16] |
ERIKSSON P, JIMÉNEZ C, BUEHLER S A. Qpack, a general tool for instrument simulation and retrieval work[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(1): 47-64 doi: 10.1016/j.jqsrt.2004.05.050
|
| [17] |
BUEHLER S A, MENDROK J, ERIKSSON P, et al. ARTS, the Atmospheric Radiative Transfer Simulator - version 2.2, the planetary toolbox edition[J]. Geoscientific Model Development, 2018, 11(4): 1537-1556 doi: 10.5194/gmd-11-1537-2018
|
| [18] |
BERENS P. CircStat: A MATLAB toolbox for circular statistics[J]. Journal of Statistical Software, 2009, 31(10): 1-21
|