Volume 43 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
LI Wen, CHEN Shuping, ZHU Ming, WANG Xin, DONG Chao, LIU Kai. Thermodynamic Characteristics of Cryogenic Liquid Krypton Tank in Microgravity (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 694-702 doi: 10.11728/cjss2023.04.2022-0040
Citation: LI Wen, CHEN Shuping, ZHU Ming, WANG Xin, DONG Chao, LIU Kai. Thermodynamic Characteristics of Cryogenic Liquid Krypton Tank in Microgravity (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 694-702 doi: 10.11728/cjss2023.04.2022-0040

Thermodynamic Characteristics of Cryogenic Liquid Krypton Tank in Microgravity

doi: 10.11728/cjss2023.04.2022-0040 cstr: 32142.14.cjss2023.04.2022-0040
  • Received Date: 2022-08-09
  • Accepted Date: 2023-06-25
  • Rev Recd Date: 2022-11-30
  • Available Online: 2023-06-25
  • The cryogenic liquid krypton tank will be in microgravity environment for more than several hundred seconds during MECO (Main Engine Cut-off) phase, its internal heat transfer and phase change have an important impact on the performance of the storage and supply system of the large orbit transfer vehicle. To investigate the pressure variation and temperature distribution of on orbit cryogenic liquid krypton tank in microgravity conditions, establishing a CFD model of cryogenic liquid krypton tank, the effects of gravity level, initial liquid krypton temperature and initial filling rate on the thermal stratification and pressure variation of liquid krypton tank in microgravity conditions were studied by using VOF method and Lee gas-liquid phase change theory. The results show that, in the microgravity conditions, the tank pressure rise rate are lower than that in the ground condition, a smaller gravity causes a smaller tank pressure, and the pressure rise rate of tank under g0 is 1.84 times, 1.98 times and 2.04 times of 10–4 g0, 10–5 g0 and 10–6 g0 respectively, and the degree of temperature stratification (2~3 K) is much lower than that of ground condition (90 K). Under the microgravity level of 10–4 g0, the tank pressure decreases first and then increases gradually with time at different initial liquid krypton temperatures (133.5 K, 134 K, 134.5 K), and the lower the initial liquid krypton temperature is, the smaller the pressure rise rate of the cryogenic liquid krypton tank is. Under the microgravity level of 10–4 g0, there is a critical initial fill ratio (70%) of the cryogenic liquid krypton tank. When the initial fill ratio is larger than the critical value, the pressure rise rate increases with the increase of the initial fill ratio, and when the initial fill ratio is lower than the critical value, the pressure rise rate of the tank decreases with the increase of the initial fill ratio.

     

  • loading
  • [1]
    申连华, 张星, 陈艺, 等. 电推进工质的研究进展及发展趋势[J]. 火箭推进, 2017, 43(6): 7-13,75 doi: 10.3969/j.issn.1672-9374.2017.06.002

    SHEN Lianhua, ZHANG Xing, CHENG Yi, et al. Research progress and development trend of working medium for electric propulsion[J]. Journal of Rocket Propulsion, 2017, 43(6): 7-13,75 doi: 10.3969/j.issn.1672-9374.2017.06.002
    [2]
    DUCHEMIN O, VALENTIAN D, CORNU N. Cryostorage of propellants for electric propulsion[C]//45 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver: AIAA, 2009
    [3]
    陈既东, 朱建炳, 赵积鹏, 等. 电推进系统液氪低温推进剂贮箱关键技术分析[J]. 真空与低温, 2022, 28(6): 660-667 doi: 10.3969/j.issn.1006-7086.2022.06.005

    CHEN Jidong, ZHU Jianbing, ZHAO Jipeng, et al. Key technology analysis of liquid krypton cryogenic propellant tank in electric propulsion system[J]. Vacuum and Cryogenics, 2022, 28(6): 660-667 doi: 10.3969/j.issn.1006-7086.2022.06.005
    [4]
    BELMEDANI M, BELGACEM A, REBIAI R. Analysis of natural convection in liquid nitrogen under storage conditions[J]. Journal of Applied Sciences, 2008, 8(14): 2544-2552 doi: 10.3923/jas.2008.2544.2552
    [5]
    STEWART M. Pressurization of a flight weight, liquid hydrogen tank: evaporation & condensation at the liquid/vapor interface[C]//53 rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta: AIAA, 2017
    [6]
    PANZARELLA C H, KASSEMI M. Self-pressurization of large spherical cryogenic tanks in space[J]. Journal of Spacecraft and Rockets, 2005, 42(2): 299-308 doi: 10.2514/1.4571
    [7]
    PANZARELLA C, PLACHTA D, KASSEMI M. Pressure control of large cryogenic tanks in microgravity[J]. Cryogenics, 2004, 44(6/8): 475-483
    [8]
    杨鹏, 闫春杰, 郑永煜, 等. 微重力环境下低温推进剂贮箱内气泡运动及融合特性研究[J]. 西安交通大学学报, 2022, 56(9): 84-91

    YANG Peng, YAN Chunjie, ZHENG Yongyi, et al. Bubble movement and coalescence characteristics in cryogenic propellant tank in microgravity environment[J]. Journal of Xi’an Jiaotong University, 2022, 56(9): 84-91
    [9]
    闫春杰, 郑永煜, 杨祺, 等. 微重力环境下低温推进剂贮箱内气液界面形变特性研究[J]. 真空与低温, 2022, 28(3): 285-290 doi: 10.3969/j.issn.1006-7086.2022.03.006

    YAN Chunjie, ZHENG Yongyi, YANG Qi, et al. Deformation characteristics of gas-liquid interface in cryogenic propellant tank under microgravity environment[J]. Vacuum and Cryogenics, 2022, 28(3): 285-290 doi: 10.3969/j.issn.1006-7086.2022.03.006
    [10]
    AYDELOTT J C. Effect of Gravity on Self-pressurization of Spherical Liquid-hydrogen Tankage[R]. Washington: NASA, 1967
    [11]
    DAIGLE M J, SMELYANSKIY V N, BOSCHEE J, et al. Temperature stratification in a cryogenic fuel tank[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(1): 116-126 doi: 10.2514/1.T3933
    [12]
    刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究[J]. 低温工程, 2016(1): 25-31,53 doi: 10.3969/j.issn.1000-6516.2016.01.006

    LIU Zhan, SUN Peijie, LI Peng, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity[J]. Cryogenics, 2016(1): 25-31,53 doi: 10.3969/j.issn.1000-6516.2016.01.006
    [13]
    王妍卉, 周炳红. 微重力条件下初始液氢温度对低温推进剂贮箱气枕压力的影响[J]. 空间科学学报, 2020, 40(3): 394-400 doi: 10.11728/cjss2020.03.394

    WANG Yanhui, ZHOU Binghong. Effect of initial liquid hydrogen temperature on the pressure changes in the cryogenic propellant tank[J]. Chinese Journal of Space Science, 2020, 40(3): 394-400 doi: 10.11728/cjss2020.03.394
    [14]
    JIANG Y B, YU Y S, WANG Z, et al. CFD simulation of heat transfer and phase change characteristics of the cryogenic liquid hydrogen tank under microgravity conditions[J]. International Journal of Hydrogen Energy, 2023, 48(19): 7026-7037 doi: 10.1016/j.ijhydene.2022.04.006
    [15]
    VISHNU S B, KUZHIVELI B T. Effect of micro- and elevated gravity condition on the evolution of stratification and self-pressurization in a cryogenic propellant tank[J]. Sādhanā, 2019, 44(3): 63
    [16]
    FU J, SUNDEN B, CHEN X Q, et al. Influence of phase change on self-pressurization in cryogenic tanks under microgravity[J]. Applied Thermal Engineering, 2015, 87: 225-233 doi: 10.1016/j.applthermaleng.2015.05.020
    [17]
    KARTUZOVA O, KASSEMI M. Modeling interfacial turbulent heat transfer during ventless pressurization of a large scale cryogenic storage tank in microgravity[C]//47 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego: AIAA, 2015
    [18]
    王夕, 王珏, 容易, 等. 微重力下低温贮箱内推进剂相变仿真模型研究[J]. 导弹与航天运载技术, 2018(1): 36-40

    WANG Xi, WANG Yu, RONG Yi, et al. Computational research on phase change model for cryogenic propellant in microgravity[J]. Missiles and Space Vehicles, 2018(1): 36-40
    [19]
    LIN C S, HASAN M M. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment[C]//30th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1992
    [20]
    SEO M, JEONG S. Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model[J]. Cryogenics, 2010, 50(9): 549-555 doi: 10.1016/j.cryogenics.2010.02.021
    [21]
    BROWN J S. Vapor Condensation on Turbulent Liquid [D]. Cambridge: Massachusetts Institute of Technology, 1991
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article Views(510) PDF Downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return