| Citation: | JIANG Gaixin, LIU Yurong. Satellite Telemetry Parameter Prediction Based on Improved Combinatorial Machine Learning (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 786-792 doi: 10.11728/cjss2023.04.2022-0057 |
| [1] |
谭春林, 胡太彬, 王大鹏, 等. 国外航天器在轨故障统计与分析[J]. 航天器工程, 2011, 20(4): 130-136
TAN Chunlin, HU Taibin, WANG Dapeng, et al. Analysis on foreign spacecraft in-orbit failures[J]. Spacecraft Engineering, 2011, 20(4): 130-136
|
| [2] |
庞景月. 基于概率性预测的航天器遥测数据异常检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019
PANG Jingyue. Probabilistic prediction based anomaly detection method for spacecraft telemetry data[D]. Harbin: Harbin Institute of Technology, 2019
|
| [3] |
WILSON G T. Time series analysis: forecasting and control, 5 th Edition, by George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 2015. Published by John Wiley and Sons Inc., Hoboken, New Jersey, pp. 712. ISBN: 978-1-118-67502-1[J]. Journal of Time Series Analysis, 2016, 37(5): 709-711 doi: 10.1111/jtsa.12194
|
| [4] |
ÖLLER L E, STOCKHAMMAR P. Rob J. Hyndman, Anne B. Koehler, J. Keith Ord, Ralph Snyder, forecasting with exponential smoothing: the state space approach, Springer (2008), 359 pp, ISBN 978-3-540-71916-0 (paperback), €36.95, e-ISBN 978-3-540-71918-2 (online), €25/Chapter[J]. International Journal of Forecasting, 2010, 26(1): 204-205 doi: 10.1016/j.ijforecast.2009.09.005
|
| [5] |
ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456 doi: 10.1038/s42256-021-00312-3
|
| [6] |
O'MEARA C, SCHLAG L, WICKLER M. Applications of deep learning neural networks to satellite telemetry monitoring[C]//Proceedings of the 2018 SpaceOps Conference. Marseille, France: AIAA, 2018
|
| [7] |
李志强, 张香燕, 田华东. 应用HP滤波的卫星遥测数据预测方法[J]. 航天器工程, 2021, 30(4): 23-30
LI Zhiqiang, ZHANG Xiangyan, TIAN Huadong. Prediction method of satellite telemetry data using HP filter[J]. Spacecraft Engineering, 2021, 30(4): 23-30
|
| [8] |
LIU D T, PANG J Y, SONG G, et al. Fragment anomaly detection with prediction and statistical analysis for satellite telemetry[J]. IEEE Access, 2017, 5: 19269-19281 doi: 10.1109/ACCESS.2017.2754447
|
| [9] |
FANG H Z, ZOU K X, YI D W, et al. The study of spacecraft telemetry data prediction based-on SERTS model[C]//Proceedings of 2011 Prognostics and System Health Management Conference. Shenzhen, China: IEEE, 2011: 1-5
|
| [10] |
石梦鑫. 基于注意力机制神经网络的遥测数据预测方法[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020
SHI Mengxin. Telemetry Data Prediction Method Based on Attention Mechanism Neural Network[D]. Beijing: The University of Chinese Academy of Science (National Space Science Center, Chinese Academy of Science), 2020
|
| [11] |
AHMED A, ALY M, GONZALEZ J, et al. Scalable inference in latent variable models[C]//Proceedings of the 5 th ACM International Conference on Web Search and Data Mining. Seattle, Washington, USA: ACM, 2012
|
| [12] |
HWANG Y, TONG A, CHOI J. Automatic construction of nonparametric relational regression models for multiple time series[C//Proceedings of the 33 rd International Conference on International Conference on Machine Learning. New York, NY, USA: JMLR. org, 2016
|
| [13] |
JING H, SMOLA A J. Neural survival recommender[C]//Proceedings of the 10 th ACM International Conference on Web Search and Data Mining. Cambridge, United Kingdom: ACM, 2017
|
| [14] |
LAI G K, CHANG W C, YANG Y M, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41 st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor, MI, USA: Association for Computing Machinery, 2018: 95-104. DOI: 10.1145/3209978.3210006
|