Volume 43 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
JIANG Gaixin, LIU Yurong. Satellite Telemetry Parameter Prediction Based on Improved Combinatorial Machine Learning (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 786-792 doi: 10.11728/cjss2023.04.2022-0057
Citation: JIANG Gaixin, LIU Yurong. Satellite Telemetry Parameter Prediction Based on Improved Combinatorial Machine Learning (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 786-792 doi: 10.11728/cjss2023.04.2022-0057

Satellite Telemetry Parameter Prediction Based on Improved Combinatorial Machine Learning

doi: 10.11728/cjss2023.04.2022-0057 cstr: 32142.14.cjss2023.04.2022-0057
  • Received Date: 2022-10-09
  • Accepted Date: 2023-06-25
  • Rev Recd Date: 2023-02-08
  • Available Online: 2023-06-25
  • The monitoring, analysis and anomaly detection of the operational status of satellites in orbit are important contents of satellite operational management. It is very necessary to predict the changing trend of satellite telemetry parameter data series for detecting, dealing with satellite anomalies and ensuring the safe operation of satellites. Aiming at the problem that the current prediction research is not accurate enough for telemetry parameters with insignificant periodicity and multiple changing characteristics, this paper introduces covariates that are helpful for telemetry parameter sequence prediction, and proposes a prediction model based on improved combined machine learning, using the global model and the local model to obtain the trend characteristics and local irregular fluctuation characteristics of the telemetry parameter sequence respectively, and the improved Attention mechanism is used to capture the correlation between multi-dimensional parameters to improve the prediction accuracy. At the same time, this model can provide point prediction and interval prediction results for the telemetry data sequence, providing more input for the decision-making of on-orbit satellite disposal. The validity of the proposed method is verified on the real telemetry data set of scientific satellites and the public time series data sets.

     

  • loading
  • [1]
    谭春林, 胡太彬, 王大鹏, 等. 国外航天器在轨故障统计与分析[J]. 航天器工程, 2011, 20(4): 130-136

    TAN Chunlin, HU Taibin, WANG Dapeng, et al. Analysis on foreign spacecraft in-orbit failures[J]. Spacecraft Engineering, 2011, 20(4): 130-136
    [2]
    庞景月. 基于概率性预测的航天器遥测数据异常检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019

    PANG Jingyue. Probabilistic prediction based anomaly detection method for spacecraft telemetry data[D]. Harbin: Harbin Institute of Technology, 2019
    [3]
    WILSON G T. Time series analysis: forecasting and control, 5 th Edition, by George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 2015. Published by John Wiley and Sons Inc., Hoboken, New Jersey, pp. 712. ISBN: 978-1-118-67502-1[J]. Journal of Time Series Analysis, 2016, 37(5): 709-711 doi: 10.1111/jtsa.12194
    [4]
    ÖLLER L E, STOCKHAMMAR P. Rob J. Hyndman, Anne B. Koehler, J. Keith Ord, Ralph Snyder, forecasting with exponential smoothing: the state space approach, Springer (2008), 359 pp, ISBN 978-3-540-71916-0 (paperback), €36.95, e-ISBN 978-3-540-71918-2 (online), €25/Chapter[J]. International Journal of Forecasting, 2010, 26(1): 204-205 doi: 10.1016/j.ijforecast.2009.09.005
    [5]
    ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456 doi: 10.1038/s42256-021-00312-3
    [6]
    O'MEARA C, SCHLAG L, WICKLER M. Applications of deep learning neural networks to satellite telemetry monitoring[C]//Proceedings of the 2018 SpaceOps Conference. Marseille, France: AIAA, 2018
    [7]
    李志强, 张香燕, 田华东. 应用HP滤波的卫星遥测数据预测方法[J]. 航天器工程, 2021, 30(4): 23-30

    LI Zhiqiang, ZHANG Xiangyan, TIAN Huadong. Prediction method of satellite telemetry data using HP filter[J]. Spacecraft Engineering, 2021, 30(4): 23-30
    [8]
    LIU D T, PANG J Y, SONG G, et al. Fragment anomaly detection with prediction and statistical analysis for satellite telemetry[J]. IEEE Access, 2017, 5: 19269-19281 doi: 10.1109/ACCESS.2017.2754447
    [9]
    FANG H Z, ZOU K X, YI D W, et al. The study of spacecraft telemetry data prediction based-on SERTS model[C]//Proceedings of 2011 Prognostics and System Health Management Conference. Shenzhen, China: IEEE, 2011: 1-5
    [10]
    石梦鑫. 基于注意力机制神经网络的遥测数据预测方法[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020

    SHI Mengxin. Telemetry Data Prediction Method Based on Attention Mechanism Neural Network[D]. Beijing: The University of Chinese Academy of Science (National Space Science Center, Chinese Academy of Science), 2020
    [11]
    AHMED A, ALY M, GONZALEZ J, et al. Scalable inference in latent variable models[C]//Proceedings of the 5 th ACM International Conference on Web Search and Data Mining. Seattle, Washington, USA: ACM, 2012
    [12]
    HWANG Y, TONG A, CHOI J. Automatic construction of nonparametric relational regression models for multiple time series[C//Proceedings of the 33 rd International Conference on International Conference on Machine Learning. New York, NY, USA: JMLR. org, 2016
    [13]
    JING H, SMOLA A J. Neural survival recommender[C]//Proceedings of the 10 th ACM International Conference on Web Search and Data Mining. Cambridge, United Kingdom: ACM, 2017
    [14]
    LAI G K, CHANG W C, YANG Y M, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41 st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor, MI, USA: Association for Computing Machinery, 2018: 95-104. DOI: 10.1145/3209978.3210006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article Views(900) PDF Downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return