| Citation: | ZHOU Ting, TANG Hong, MIAO Bingkui, ZENG Xiaojia, XIA Zhipeng, YU Wen, ZHOU Chuanjiao, HE Encheng. Review of the Spectral Effects of Space Weathering on C-type Asteroids (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 647-660 doi: 10.11728/cjss2023.04.2022-0058 |
| [1] |
YADA T, ABE M, OKADA T, et al. Ryugu: a brand-new planetary sample returned from a C-type asteroid[Z]. Nature Portfolio, 2021, 1-20. DOI: 10.21203/rs.3.rs-608561/v1
|
| [2] |
ZELLNER B, THOLEN D J, TEDESCO E F. The eight-color asteroid survey: results for 589 minor planets[J]. Icarus, 1985, 61(3): 355-416 doi: 10.1016/0019-1035(85)90133-2
|
| [3] |
THOLEN D J. Asteroid taxonomic classifications[M]//BINZEL R P, GEHRELS T, SHAPLEY MATTHEWS M. Asteroids II. Tucson: University. of Arizona Press, 1989
|
| [4] |
BUS S J, BINZEL R P. Phase II of the small main-belt asteroid spectroscopic survey: a feature-based taxonomy[J]. Icarus, 2002, 158(1): 146-177 doi: 10.1006/icar.2002.6856
|
| [5] |
DEMEO F E, BINZEL R P, SLIVAN S M, et al. An extension of the Bus asteroid taxonomy into the near-infrared[J]. Icarus, 2009, 202(1): 160-180 doi: 10.1016/j.icarus.2009.02.005
|
| [6] |
BUSAREV V V. A hypothesis on the origin of C-type asteroids and carbonaceous chondrites[OL]. arXiv preprint arXiv: 1211.3042, 2012
|
| [7] |
GAFFEY M J, MCCORD T B. Asteroid surface materials: mineralogical characterizations from reflectance spectra[J]. Space Science Reviews, 1978, 21(5): 555-628
|
| [8] |
DE SANCTIS M C, AMMANNITO E, RAPONI A, et al. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres[J]. Nature, 2015, 528(7581): 241-244 doi: 10.1038/nature16172
|
| [9] |
MATSUOKA M, NAKAMURA T, HIROI T, et al. Infrared spectra of asteroid Ryugu: comparison to laboratory-measured carbonaceous chondrites[C]//Proceedings of the 50 th Annual Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2132, 2019: 1534
|
| [10] |
CAMPINS H, HARGROVE K, PINILLA-ALONSO N, et al. Water ice and organics on the surface of the asteroid 24 Themis[J]. Nature, 2010, 464(7293): 1320-1321 doi: 10.1038/nature09029
|
| [11] |
PILORGET C, OKADA T, HAMM V, et al. First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope[J]. Nature Astronomy, 2022, 6(2): 221-225
|
| [12] |
PIETERS C M, NOBLE S K. Space weathering on airless bodies[J]. Journal of Geophysical Research:Planets, 2016, 121(10): 1865-1884 doi: 10.1002/2016JE005128
|
| [13] |
TRANG D, THOMPSON M S, CLARK B E, et al. The role of hydrated minerals and space weathering products in the bluing of carbonaceous asteroids[J]. The Planetary Science Journal, 2021, 2(2): 68 doi: 10.3847/PSJ/abe76f
|
| [14] |
MALFAVON A. Space Weathering Simulation Trends on Carbonaceous Chondrites[D]. Central Florida: University of Central Florida, 2020
|
| [15] |
HENDRIX A R, VILAS F. C‐complex asteroids: UV‐visible spectral characteristics and implications for space weathering effects[J]. Geophysical Research Letters, 2019, 46(24): 14307-14317 doi: 10.1029/2019GL085883
|
| [16] |
REUTER D C, SIMON A A, HAIR J, et al. The OSIRIS-REx visible and InfraRed spectrometer (OVIRS): spectral maps of the asteroid bennu[J]. Space Science Reviews, 2018, 214(2): 54 doi: 10.1007/s11214-018-0482-9
|
| [17] |
中国国家航天局. 小行星探测任务有效载荷和搭载项目机遇公告[EB/OL]. [ 2019-04-19] http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/content.html
China National Space Administration. Asteroid mission payload and carrying project opportunity announcement [EB/OL]. [2019-04-19] http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/content.html
|
| [18] |
SHARKEY B N L, REDDY V, MALHOTRA R, et al. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamoʻoalewa[J]. Communications Earth & Environment, 2021, 2(1): 231
|
| [19] |
MORRISON D. Radiometric diameters and albedos of 40 asteroids[J]. Astrophysical Journal, 1974, 194(15): 203-212
|
| [20] |
CHAPMAN C R, MORRISON D, ZELLNER B. Surface properties of asteroids: a synthesis of polarimetry, radiometry, and spectrophotometry[J]. Icarus, 1975, 25(1): 104-130 doi: 10.1016/0019-1035(75)90191-8
|
| [21] |
TEDESCO E F, WILLIAMS J G, MATSON D L, et al. A three-parameter asteroid taxonomy[J]. Astronomical Journal, 1989, 97: 580-606 doi: 10.1086/115007
|
| [22] |
TEDESCO E F. The IRAS minor planet survey[R]. Cambridge University Press, 1994, 1-437
|
| [23] |
TEDESCO E F, NOAH P V, NOAH M, et al. The supplemental IRAS minor planet survey[J]. The Astronomical Journal, 2002, 123(2): 1056-1085 doi: 10.1086/338320
|
| [24] |
MASIERO J R, MAINZER A K, GRAV T, et al. Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters[J]. The Astrophysical Journal, 2011, 741(2): 68 doi: 10.1088/0004-637X/741/2/68
|
| [25] |
TEDESCO E F, EGAN M P, PRICE S D. The midcourse space experiment infrared minor planet survey[J]. The Astronomical Journal, 2002, 124(1): 583
|
| [26] |
TEDESCO E F. Archiving asteroid photometric data[J]. Highlights of Astronomy, 1992, 9: 719-720 doi: 10.1017/S1539299600010169
|
| [27] |
THOLEN D J. Asteroid Taxonomy from Cluster Analysis of Photometry[D]. Tucson: The University of Arizona, 1984
|
| [28] |
唐红, 李雄耀, 王世杰. 不同赋存状态水的光谱特征分析[C]//中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 南京: 《高校地质学报》编辑部, 2013
TANG Hong, LI Xiongyao, WANG Shijie. Analysis of spectral characteristics of water in different occurrence states[C]//Proceedings of the Abstract Album of the 14 th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry. Nanjing: Editorial Department of Journal of University Geology, 2013
|
| [29] |
BECK P, ESCHRIG J, POTIN S, et al. “Water” abundance at the surface of C-complex main-belt asteroids[J]. Icarus, 2021, 357: 114125 doi: 10.1016/j.icarus.2020.114125
|
| [30] |
LEBOFSKY L A. Infrared reflectance spectra of asteroids: a search for water of hydration[J]. The Astronomical Journal, 1980, 85: 573-585 doi: 10.1086/112714
|
| [31] |
BARUCCI M A, DOTTO E, BRUCATO J R, et al. 10 Hygiea: ISO infrared observations[J]. Icarus, 2002, 156(1): 202-210 doi: 10.1006/icar.2001.6775
|
| [32] |
BARUCCI M A, DORESSOUNDIRAM A, FULCHIGNONI M, et al. Search for aqueously altered materials on asteroids[J]. Icarus, 1998, 132(2): 388-396 doi: 10.1006/icar.1998.5889
|
| [33] |
VILAS F. A cheaper, faster, better way to detect water of hydration on Solar System bodies[J]. Icarus, 1994, 111(2): 456-467 doi: 10.1006/icar.1994.1156
|
| [34] |
HOWELL E S, RIVKIN A S, SODERBERG A, et al. Aqueous alteration of asteroids: correlation of the 3 μm and 0.7 μm hydration bands[C]//Proceedings of the 31 st DPS Meeting. Padova: American Astronomical Society, 1999: 1074
|
| [35] |
VILAS F, GAFFEY M J. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra[J]. Science, 1989, 246(4931): 790-792 doi: 10.1126/science.246.4931.790
|
| [36] |
HIROI T, ZOLENSKY M E, PIETERS C M, et al. Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites[J]. Meteoritics & Planetary Science, 1996, 31(3): 321-327
|
| [37] |
FORNASIER S, LANTZ C, BARUCCI M A, et al. Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy[J]. Icarus, 2014, 233: 163-178 doi: 10.1016/j.icarus.2014.01.040
|
| [38] |
TAKIR D, EMERY J P. Outer main belt asteroids: identification and distribution of four 3-μm spectral groups[J]. Icarus, 2012, 219(2): 641-654 doi: 10.1016/j.icarus.2012.02.022
|
| [39] |
KAMEDA S, YOKOTA Y, KOUYAMA T, et al. Improved method of hydrous mineral detection by latitudinal distribution of 0.7-μm surface reflectance absorption on the asteroid Ryugu[J]. Icarus, 2021, 360: 114348 doi: 10.1016/j.icarus.2021.114348
|
| [40] |
KITAZATO K, MILLIKEN R E, IWATA T, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy[J]. Science, 2019, 364(6437): 272-275 doi: 10.1126/science.aav7432
|
| [41] |
GERMANN J T, FIEBER-BEYER S K, GAFFEY M J. Evidence for hydrated minerals in the VNIR spectra of G-class asteroids: a first look[J]. Icarus, 2022, 377: 114916 doi: 10.1016/j.icarus.2022.114916
|
| [42] |
LEBOFSKY L A. Asteroid 1 Ceres: evidence for water of hydration[J]. Monthly Notices of the Royal Astronomical Society, 1978, 182(1): 17P-21P doi: 10.1093/mnras/182.1.17P
|
| [43] |
JONES T D, LEBOFSKY L A, LEWIS J S, et al. The composition and origin of the C, P, and D asteroids: water as a tracer of thermal evolution in the outer belt[J]. Icarus, 1990, 88(1): 172-192 doi: 10.1016/0019-1035(90)90184-B
|
| [44] |
RIVKIN A S, HOWELL E S, VILAS F, et al. Hydrated Minerals on Asteroids: the Astronomical Record[R]. Tucson: Asteroids III, 2002: 235-253
|
| [45] |
CRUIKSHANK D P, BROWN R H. Organic matter on asteroid 130 Elektra[J]. Science, 1987, 238(4824): 183-184 doi: 10.1126/science.238.4824.183
|
| [46] |
RIVKIN A S, EMERY J P. Detection of ice and organics on an asteroidal surface[J]. Nature, 2010, 464(7293): 1322-1323 doi: 10.1038/nature09028
|
| [47] |
RIVKIN A S, HOWELL E S, EMERY J P. Infrared spectroscopy of large, low‐albedo asteroids: are Ceres and Themis archetypes or outliers?[J]. Journal of Geophysical Research: Planets, 2019, 124(5): 1393-1409 doi: 10.1029/2018JE005833
|
| [48] |
YADA T, ABE M, OKADA T, et al. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu[J]. Nature Astronomy, 2022, 6(2): 214-220
|
| [49] |
PARKER E T, FURUSHO A, GLAVIN D P, et al. Amino acid analyses of a sample of Ryugu by a combination of liquid chromatograhpy and high-resolution mass spectrometry techniques[C]//Proceedings of the 53 rd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2678, 2022: 2651
|
| [50] |
APONTE J C, DWORKIN J P, GLAVIN D P, et al. Two-dimensional gas chromatography analysis of Ryugu samples[C]//Proceedings of the 53 rd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2678, 2022: 1221
|
| [51] |
HASHIGUCHI M, AOKI D, FUKUSHIMA K, et al. The spatial distribution of soluble organic matter and their relationship to minerals in the asteroid (162173) Ryugu[J]. Earth, Planets and Space, 2023, 75(1): 73 doi: 10.1186/s40623-023-01792-w
|
| [52] |
MOROZ L, BARATTA G, STRAZZULLA G, et al. Optical alteration of complex organics induced by ion irradiation: : 1. Laboratory experiments suggest unusual space weathering trend[J]. Icarus, 2004, 170(1): 214-228 doi: 10.1016/j.icarus.2004.02.003
|
| [53] |
BRUNETTO R, LANTZ C, LEDU D, et al. Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies[J]. Icarus, 2014, 237: 278-292 doi: 10.1016/j.icarus.2014.04.047
|
| [54] |
LANTZ C, BRUNETTO R, BARUCCI M A, et al. Ion irradiation of carbonaceous chondrites: a new view of space weathering on primitive asteroids[J]. Icarus, 2017, 285: 43-57 doi: 10.1016/j.icarus.2016.12.019
|
| [55] |
NAKAMURA T, LANTZ C, KOBAYASHI S, et al. Experimental reproduction of space weathering of C-type asteroids by He exposure to shocked and partially dehydrated carbonaceous chondrites[C]//Proceedings of the the 82 nd Annual Meeting of the Meteoritical Society. Sapporo: LPI Contribution No. 2157, 2019: 6211
|
| [56] |
LAGERKVIST C I, MOROZ L, NATHUES A, et al. A study of Cybele asteroids-II. Spectral properties of Cybele asteroids[J]. Astronomy & Astrophysics, 2005, 432(1): 349-354
|
| [57] |
LOEFFLER M J, DUKES C A, BARAGIOLA R A. Irradiation of olivine by 4 keV He+: simulation of space weathering by the solar wind[J]. Journal of Geophysical Research: Planets, 2009, 114(E3): E03003
|
| [58] |
KELLER L P, CHRISTOFFERSEN R, DUKES C A, et al. Ion irradiation experiments on the Murchison CM2 carbonaceous chondrite: simulating space weathering of primitive asteroids[C]//Proceedings of the 46 th Lunar and Planetary Science Conference. Texas: LPI Contribution No. 1832, 2015: 1913
|
| [59] |
LANTZ C, BRUNETTO R, BARUCCI M A, et al. Ion irradiation of the Murchison meteorite: visible to mid-infrared spectroscopic results[J]. Astronomy & Astrophysics, 2015, 577: A41
|
| [60] |
LACZNIAK D L, THOMPSON M S, CHRISTOFFERSEN R, et al. Understanding space weathering of carbonaceous asteroids through H+ and He+ ion irradiation of the Murchison meteorite[C]//Proceedings of the 52 nd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2548, 2021: 2548
|
| [61] |
BRUNETTO R, LANTZ C, DIONNET Z, et al. Hyperspectral FTIR imaging of irradiated carbonaceous meteorites[J]. Planetary and Space Science, 2018, 158: 38-45 doi: 10.1016/j.pss.2018.05.008
|
| [62] |
NAKAUCHI Y, ABE M, OHTAKE M, et al. The formation of H2O and Si-OH by H2+ irradiation in major minerals of carbonaceous chondrites[J]. Icarus, 2021, 355: 114140 doi: 10.1016/j.icarus.2020.114140
|
| [63] |
ORTHOUS-DAUNAY F R, ISA J, WOLTERS C, et al. Molecular growth pattern of soluble CHN compounds from Ryugu[C]//Proceedings of the 53 rd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2678, 2022: 2367
|
| [64] |
REMUSAT L, VERDIER-PAOLETTI M, MOSTEFAOUI S, et al. H-and N-isotope distributions in the insoluble organic matter of Ryugu samples[C]//Proceedings of the 53 rd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2678, 2022: 1448
|
| [65] |
MATSUOKA M, NAKAMURA T, KIMURA Y, et al. Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids[J]. Icarus, 2015, 254: 135-143 doi: 10.1016/j.icarus.2015.02.029
|
| [66] |
GILLIS-DAVIS J J, GASDA P J, BRADLEY J P, et al. Laser space weathering of Allende (CV2) and Murchison (CM2) carbonaceous chondrites[C]// 46 th Lunar and Planetary Science Conference. Texas: LPI Contribution No. 1832, 2015: 1607
|
| [67] |
MATSUOKA M, NAKAMURA T, KIMURA Y, et al. Reproducing space weathering on C-Type asteroids with low-energy laser irradiation experiments of the Murchison meteorite[C]//Proceedings of the 47 th Annual Lunar and Planetary Science Conference. Texas: LPI Contribution No. 1903, 2016: 1823
|
| [68] |
GILLIS-DAVIS J J, ISHII H A, ADAMS M, et al. Laser irradiation of two CV3 meteorites yields desparate weathering effects[C]//Proceedings of the 48 th Annual Lunar and Planetary Science Conference. Texas: LPI Contribution No. 1964, 2017: 1003
|
| [69] |
MATSUOKA M, NAKAMURA T, HIROI T, et al. Space weathering simulation with low-energy laser irradiation of Murchison CM chondrite for reproducing micrometeoroid bombardments on C-type asteroids[J]. The Astrophysical Journal Letters, 2020, 890(2): L23 doi: 10.3847/2041-8213/ab72a4
|
| [70] |
MOROZ L V, HIROI T, SHINGAREVA T V, et al. Reflectance spectra of CM2 chondrite Mighei irradiated with pulsed laser and implications for low-albedo asteroids and Martian moons[C]//Proceedings of the 35 th Lunar and Planetary Science Conference. Texas: abstract No. 1279, 2004
|
| [71] |
THOMPSON M S, LOEFFLER M J, MORRIS R V, et al. Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite[J]. Icarus, 2019, 319: 499-511 doi: 10.1016/j.icarus.2018.09.022
|
| [72] |
PRINCE B S, LOEFFLER M J. Space weathering of the 3-μm phyllosilicate feature induced by pulsed laser irradiation[J]. Icarus, 2022, 372: 114736 doi: 10.1016/j.icarus.2021.114736
|
| [73] |
BUSEMANN H, ALEXANDER C M O D, NITTLER L R. Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy[J]. Meteoritics & Planetary Science, 2007, 42(7/8): 1387-1416
|
| [74] |
THOMPSON M S, LOEFFLER M J, MORRIS R V, et al. Investigating the effects of simulated micrometeorite impacts on a carbonaceous chondrite through coordinated analysis[C]//Proceedings of the 82 nd Annual Meeting of the Meteoritical Society. Sapporo: LPI Contribution No. 2157, 2019: 6318
|
| [75] |
THOMPSON M S, MORRIS R V, CLEMETT S J, et al. The effect of progressive space weathering on the organic and inorganic components of a carbonaceous chondrite[J]. Icarus, 2020, 346: 113775 doi: 10.1016/j.icarus.2020.113775
|