Volume 43 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
ZHOU Ting, TANG Hong, MIAO Bingkui, ZENG Xiaojia, XIA Zhipeng, YU Wen, ZHOU Chuanjiao, HE Encheng. Review of the Spectral Effects of Space Weathering on C-type Asteroids (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 647-660 doi: 10.11728/cjss2023.04.2022-0058
Citation: ZHOU Ting, TANG Hong, MIAO Bingkui, ZENG Xiaojia, XIA Zhipeng, YU Wen, ZHOU Chuanjiao, HE Encheng. Review of the Spectral Effects of Space Weathering on C-type Asteroids (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 647-660 doi: 10.11728/cjss2023.04.2022-0058

Review of the Spectral Effects of Space Weathering on C-type Asteroids

doi: 10.11728/cjss2023.04.2022-0058 cstr: 32142.14.cjss2023.04.2022-0058
  • Received Date: 2022-10-09
  • Accepted Date: 2023-06-25
  • Rev Recd Date: 2023-06-25
  • Available Online: 2023-06-25
  • C-type asteroids are mainly composed of silicates and carbon-rich organic matter, which preserve the original materials of the early formation of solar system. They are important clues to understand the early formation of the solar system, and have important scientific significance for revealing the origin and evolution of water and life. At present, the understanding of the composition characteristics of asteroids is mainly based on spectral characteristics analysis. However, the long-term space weathering will change the spectral characteristics, so the understanding of the composition of asteroids needs to accurately clarify the effects of space weathering on the spectra. With the advancement of the asteroid exploration in China, it is necessary to understand the spectral characteristics and variation rules of C-type asteroids. This paper summarizes the spectral characteristics of C-type asteroids (e.g., the reflectance spectra, absorption of water and organic matter) and the influence of space weathering on C-type asteroid, analyzes the main problems existing in the research, and points out the future development trend and research focus of this research direction.

     

  • loading
  • [1]
    YADA T, ABE M, OKADA T, et al. Ryugu: a brand-new planetary sample returned from a C-type asteroid[Z]. Nature Portfolio, 2021, 1-20. DOI: 10.21203/rs.3.rs-608561/v1
    [2]
    ZELLNER B, THOLEN D J, TEDESCO E F. The eight-color asteroid survey: results for 589 minor planets[J]. Icarus, 1985, 61(3): 355-416 doi: 10.1016/0019-1035(85)90133-2
    [3]
    THOLEN D J. Asteroid taxonomic classifications[M]//BINZEL R P, GEHRELS T, SHAPLEY MATTHEWS M. Asteroids II. Tucson: University. of Arizona Press, 1989
    [4]
    BUS S J, BINZEL R P. Phase II of the small main-belt asteroid spectroscopic survey: a feature-based taxonomy[J]. Icarus, 2002, 158(1): 146-177 doi: 10.1006/icar.2002.6856
    [5]
    DEMEO F E, BINZEL R P, SLIVAN S M, et al. An extension of the Bus asteroid taxonomy into the near-infrared[J]. Icarus, 2009, 202(1): 160-180 doi: 10.1016/j.icarus.2009.02.005
    [6]
    BUSAREV V V. A hypothesis on the origin of C-type asteroids and carbonaceous chondrites[OL]. arXiv preprint arXiv: 1211.3042, 2012
    [7]
    GAFFEY M J, MCCORD T B. Asteroid surface materials: mineralogical characterizations from reflectance spectra[J]. Space Science Reviews, 1978, 21(5): 555-628
    [8]
    DE SANCTIS M C, AMMANNITO E, RAPONI A, et al. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres[J]. Nature, 2015, 528(7581): 241-244 doi: 10.1038/nature16172
    [9]
    MATSUOKA M, NAKAMURA T, HIROI T, et al. Infrared spectra of asteroid Ryugu: comparison to laboratory-measured carbonaceous chondrites[C]//Proceedings of the 50 th Annual Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2132, 2019: 1534
    [10]
    CAMPINS H, HARGROVE K, PINILLA-ALONSO N, et al. Water ice and organics on the surface of the asteroid 24 Themis[J]. Nature, 2010, 464(7293): 1320-1321 doi: 10.1038/nature09029
    [11]
    PILORGET C, OKADA T, HAMM V, et al. First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope[J]. Nature Astronomy, 2022, 6(2): 221-225
    [12]
    PIETERS C M, NOBLE S K. Space weathering on airless bodies[J]. Journal of Geophysical Research:Planets, 2016, 121(10): 1865-1884 doi: 10.1002/2016JE005128
    [13]
    TRANG D, THOMPSON M S, CLARK B E, et al. The role of hydrated minerals and space weathering products in the bluing of carbonaceous asteroids[J]. The Planetary Science Journal, 2021, 2(2): 68 doi: 10.3847/PSJ/abe76f
    [14]
    MALFAVON A. Space Weathering Simulation Trends on Carbonaceous Chondrites[D]. Central Florida: University of Central Florida, 2020
    [15]
    HENDRIX A R, VILAS F. C‐complex asteroids: UV‐visible spectral characteristics and implications for space weathering effects[J]. Geophysical Research Letters, 2019, 46(24): 14307-14317 doi: 10.1029/2019GL085883
    [16]
    REUTER D C, SIMON A A, HAIR J, et al. The OSIRIS-REx visible and InfraRed spectrometer (OVIRS): spectral maps of the asteroid bennu[J]. Space Science Reviews, 2018, 214(2): 54 doi: 10.1007/s11214-018-0482-9
    [17]
    中国国家航天局. 小行星探测任务有效载荷和搭载项目机遇公告[EB/OL]. [ 2019-04-19] http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/content.html

    China National Space Administration. Asteroid mission payload and carrying project opportunity announcement [EB/OL]. [2019-04-19] http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/content.html
    [18]
    SHARKEY B N L, REDDY V, MALHOTRA R, et al. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamoʻoalewa[J]. Communications Earth & Environment, 2021, 2(1): 231
    [19]
    MORRISON D. Radiometric diameters and albedos of 40 asteroids[J]. Astrophysical Journal, 1974, 194(15): 203-212
    [20]
    CHAPMAN C R, MORRISON D, ZELLNER B. Surface properties of asteroids: a synthesis of polarimetry, radiometry, and spectrophotometry[J]. Icarus, 1975, 25(1): 104-130 doi: 10.1016/0019-1035(75)90191-8
    [21]
    TEDESCO E F, WILLIAMS J G, MATSON D L, et al. A three-parameter asteroid taxonomy[J]. Astronomical Journal, 1989, 97: 580-606 doi: 10.1086/115007
    [22]
    TEDESCO E F. The IRAS minor planet survey[R]. Cambridge University Press, 1994, 1-437
    [23]
    TEDESCO E F, NOAH P V, NOAH M, et al. The supplemental IRAS minor planet survey[J]. The Astronomical Journal, 2002, 123(2): 1056-1085 doi: 10.1086/338320
    [24]
    MASIERO J R, MAINZER A K, GRAV T, et al. Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters[J]. The Astrophysical Journal, 2011, 741(2): 68 doi: 10.1088/0004-637X/741/2/68
    [25]
    TEDESCO E F, EGAN M P, PRICE S D. The midcourse space experiment infrared minor planet survey[J]. The Astronomical Journal, 2002, 124(1): 583
    [26]
    TEDESCO E F. Archiving asteroid photometric data[J]. Highlights of Astronomy, 1992, 9: 719-720 doi: 10.1017/S1539299600010169
    [27]
    THOLEN D J. Asteroid Taxonomy from Cluster Analysis of Photometry[D]. Tucson: The University of Arizona, 1984
    [28]
    唐红, 李雄耀, 王世杰. 不同赋存状态水的光谱特征分析[C]//中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 南京: 《高校地质学报》编辑部, 2013

    TANG Hong, LI Xiongyao, WANG Shijie. Analysis of spectral characteristics of water in different occurrence states[C]//Proceedings of the Abstract Album of the 14 th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry. Nanjing: Editorial Department of Journal of University Geology, 2013
    [29]
    BECK P, ESCHRIG J, POTIN S, et al. “Water” abundance at the surface of C-complex main-belt asteroids[J]. Icarus, 2021, 357: 114125 doi: 10.1016/j.icarus.2020.114125
    [30]
    LEBOFSKY L A. Infrared reflectance spectra of asteroids: a search for water of hydration[J]. The Astronomical Journal, 1980, 85: 573-585 doi: 10.1086/112714
    [31]
    BARUCCI M A, DOTTO E, BRUCATO J R, et al. 10 Hygiea: ISO infrared observations[J]. Icarus, 2002, 156(1): 202-210 doi: 10.1006/icar.2001.6775
    [32]
    BARUCCI M A, DORESSOUNDIRAM A, FULCHIGNONI M, et al. Search for aqueously altered materials on asteroids[J]. Icarus, 1998, 132(2): 388-396 doi: 10.1006/icar.1998.5889
    [33]
    VILAS F. A cheaper, faster, better way to detect water of hydration on Solar System bodies[J]. Icarus, 1994, 111(2): 456-467 doi: 10.1006/icar.1994.1156
    [34]
    HOWELL E S, RIVKIN A S, SODERBERG A, et al. Aqueous alteration of asteroids: correlation of the 3 μm and 0.7 μm hydration bands[C]//Proceedings of the 31 st DPS Meeting. Padova: American Astronomical Society, 1999: 1074
    [35]
    VILAS F, GAFFEY M J. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra[J]. Science, 1989, 246(4931): 790-792 doi: 10.1126/science.246.4931.790
    [36]
    HIROI T, ZOLENSKY M E, PIETERS C M, et al. Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites[J]. Meteoritics & Planetary Science, 1996, 31(3): 321-327
    [37]
    FORNASIER S, LANTZ C, BARUCCI M A, et al. Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy[J]. Icarus, 2014, 233: 163-178 doi: 10.1016/j.icarus.2014.01.040
    [38]
    TAKIR D, EMERY J P. Outer main belt asteroids: identification and distribution of four 3-μm spectral groups[J]. Icarus, 2012, 219(2): 641-654 doi: 10.1016/j.icarus.2012.02.022
    [39]
    KAMEDA S, YOKOTA Y, KOUYAMA T, et al. Improved method of hydrous mineral detection by latitudinal distribution of 0.7-μm surface reflectance absorption on the asteroid Ryugu[J]. Icarus, 2021, 360: 114348 doi: 10.1016/j.icarus.2021.114348
    [40]
    KITAZATO K, MILLIKEN R E, IWATA T, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy[J]. Science, 2019, 364(6437): 272-275 doi: 10.1126/science.aav7432
    [41]
    GERMANN J T, FIEBER-BEYER S K, GAFFEY M J. Evidence for hydrated minerals in the VNIR spectra of G-class asteroids: a first look[J]. Icarus, 2022, 377: 114916 doi: 10.1016/j.icarus.2022.114916
    [42]
    LEBOFSKY L A. Asteroid 1 Ceres: evidence for water of hydration[J]. Monthly Notices of the Royal Astronomical Society, 1978, 182(1): 17P-21P doi: 10.1093/mnras/182.1.17P
    [43]
    JONES T D, LEBOFSKY L A, LEWIS J S, et al. The composition and origin of the C, P, and D asteroids: water as a tracer of thermal evolution in the outer belt[J]. Icarus, 1990, 88(1): 172-192 doi: 10.1016/0019-1035(90)90184-B
    [44]
    RIVKIN A S, HOWELL E S, VILAS F, et al. Hydrated Minerals on Asteroids: the Astronomical Record[R]. Tucson: Asteroids III, 2002: 235-253
    [45]
    CRUIKSHANK D P, BROWN R H. Organic matter on asteroid 130 Elektra[J]. Science, 1987, 238(4824): 183-184 doi: 10.1126/science.238.4824.183
    [46]
    RIVKIN A S, EMERY J P. Detection of ice and organics on an asteroidal surface[J]. Nature, 2010, 464(7293): 1322-1323 doi: 10.1038/nature09028
    [47]
    RIVKIN A S, HOWELL E S, EMERY J P. Infrared spectroscopy of large, low‐albedo asteroids: are Ceres and Themis archetypes or outliers?[J]. Journal of Geophysical Research: Planets, 2019, 124(5): 1393-1409 doi: 10.1029/2018JE005833
    [48]
    YADA T, ABE M, OKADA T, et al. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu[J]. Nature Astronomy, 2022, 6(2): 214-220
    [49]
    PARKER E T, FURUSHO A, GLAVIN D P, et al. Amino acid analyses of a sample of Ryugu by a combination of liquid chromatograhpy and high-resolution mass spectrometry techniques[C]//Proceedings of the 53 rd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2678, 2022: 2651
    [50]
    APONTE J C, DWORKIN J P, GLAVIN D P, et al. Two-dimensional gas chromatography analysis of Ryugu samples[C]//Proceedings of the 53 rd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2678, 2022: 1221
    [51]
    HASHIGUCHI M, AOKI D, FUKUSHIMA K, et al. The spatial distribution of soluble organic matter and their relationship to minerals in the asteroid (162173) Ryugu[J]. Earth, Planets and Space, 2023, 75(1): 73 doi: 10.1186/s40623-023-01792-w
    [52]
    MOROZ L, BARATTA G, STRAZZULLA G, et al. Optical alteration of complex organics induced by ion irradiation: : 1. Laboratory experiments suggest unusual space weathering trend[J]. Icarus, 2004, 170(1): 214-228 doi: 10.1016/j.icarus.2004.02.003
    [53]
    BRUNETTO R, LANTZ C, LEDU D, et al. Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies[J]. Icarus, 2014, 237: 278-292 doi: 10.1016/j.icarus.2014.04.047
    [54]
    LANTZ C, BRUNETTO R, BARUCCI M A, et al. Ion irradiation of carbonaceous chondrites: a new view of space weathering on primitive asteroids[J]. Icarus, 2017, 285: 43-57 doi: 10.1016/j.icarus.2016.12.019
    [55]
    NAKAMURA T, LANTZ C, KOBAYASHI S, et al. Experimental reproduction of space weathering of C-type asteroids by He exposure to shocked and partially dehydrated carbonaceous chondrites[C]//Proceedings of the the 82 nd Annual Meeting of the Meteoritical Society. Sapporo: LPI Contribution No. 2157, 2019: 6211
    [56]
    LAGERKVIST C I, MOROZ L, NATHUES A, et al. A study of Cybele asteroids-II. Spectral properties of Cybele asteroids[J]. Astronomy & Astrophysics, 2005, 432(1): 349-354
    [57]
    LOEFFLER M J, DUKES C A, BARAGIOLA R A. Irradiation of olivine by 4 keV He+: simulation of space weathering by the solar wind[J]. Journal of Geophysical Research: Planets, 2009, 114(E3): E03003
    [58]
    KELLER L P, CHRISTOFFERSEN R, DUKES C A, et al. Ion irradiation experiments on the Murchison CM2 carbonaceous chondrite: simulating space weathering of primitive asteroids[C]//Proceedings of the 46 th Lunar and Planetary Science Conference. Texas: LPI Contribution No. 1832, 2015: 1913
    [59]
    LANTZ C, BRUNETTO R, BARUCCI M A, et al. Ion irradiation of the Murchison meteorite: visible to mid-infrared spectroscopic results[J]. Astronomy & Astrophysics, 2015, 577: A41
    [60]
    LACZNIAK D L, THOMPSON M S, CHRISTOFFERSEN R, et al. Understanding space weathering of carbonaceous asteroids through H+ and He+ ion irradiation of the Murchison meteorite[C]//Proceedings of the 52 nd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2548, 2021: 2548
    [61]
    BRUNETTO R, LANTZ C, DIONNET Z, et al. Hyperspectral FTIR imaging of irradiated carbonaceous meteorites[J]. Planetary and Space Science, 2018, 158: 38-45 doi: 10.1016/j.pss.2018.05.008
    [62]
    NAKAUCHI Y, ABE M, OHTAKE M, et al. The formation of H2O and Si-OH by H2+ irradiation in major minerals of carbonaceous chondrites[J]. Icarus, 2021, 355: 114140 doi: 10.1016/j.icarus.2020.114140
    [63]
    ORTHOUS-DAUNAY F R, ISA J, WOLTERS C, et al. Molecular growth pattern of soluble CHN compounds from Ryugu[C]//Proceedings of the 53 rd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2678, 2022: 2367
    [64]
    REMUSAT L, VERDIER-PAOLETTI M, MOSTEFAOUI S, et al. H-and N-isotope distributions in the insoluble organic matter of Ryugu samples[C]//Proceedings of the 53 rd Lunar and Planetary Science Conference. Texas: LPI Contribution No. 2678, 2022: 1448
    [65]
    MATSUOKA M, NAKAMURA T, KIMURA Y, et al. Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids[J]. Icarus, 2015, 254: 135-143 doi: 10.1016/j.icarus.2015.02.029
    [66]
    GILLIS-DAVIS J J, GASDA P J, BRADLEY J P, et al. Laser space weathering of Allende (CV2) and Murchison (CM2) carbonaceous chondrites[C]// 46 th Lunar and Planetary Science Conference. Texas: LPI Contribution No. 1832, 2015: 1607
    [67]
    MATSUOKA M, NAKAMURA T, KIMURA Y, et al. Reproducing space weathering on C-Type asteroids with low-energy laser irradiation experiments of the Murchison meteorite[C]//Proceedings of the 47 th Annual Lunar and Planetary Science Conference. Texas: LPI Contribution No. 1903, 2016: 1823
    [68]
    GILLIS-DAVIS J J, ISHII H A, ADAMS M, et al. Laser irradiation of two CV3 meteorites yields desparate weathering effects[C]//Proceedings of the 48 th Annual Lunar and Planetary Science Conference. Texas: LPI Contribution No. 1964, 2017: 1003
    [69]
    MATSUOKA M, NAKAMURA T, HIROI T, et al. Space weathering simulation with low-energy laser irradiation of Murchison CM chondrite for reproducing micrometeoroid bombardments on C-type asteroids[J]. The Astrophysical Journal Letters, 2020, 890(2): L23 doi: 10.3847/2041-8213/ab72a4
    [70]
    MOROZ L V, HIROI T, SHINGAREVA T V, et al. Reflectance spectra of CM2 chondrite Mighei irradiated with pulsed laser and implications for low-albedo asteroids and Martian moons[C]//Proceedings of the 35 th Lunar and Planetary Science Conference. Texas: abstract No. 1279, 2004
    [71]
    THOMPSON M S, LOEFFLER M J, MORRIS R V, et al. Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite[J]. Icarus, 2019, 319: 499-511 doi: 10.1016/j.icarus.2018.09.022
    [72]
    PRINCE B S, LOEFFLER M J. Space weathering of the 3-μm phyllosilicate feature induced by pulsed laser irradiation[J]. Icarus, 2022, 372: 114736 doi: 10.1016/j.icarus.2021.114736
    [73]
    BUSEMANN H, ALEXANDER C M O D, NITTLER L R. Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy[J]. Meteoritics & Planetary Science, 2007, 42(7/8): 1387-1416
    [74]
    THOMPSON M S, LOEFFLER M J, MORRIS R V, et al. Investigating the effects of simulated micrometeorite impacts on a carbonaceous chondrite through coordinated analysis[C]//Proceedings of the 82 nd Annual Meeting of the Meteoritical Society. Sapporo: LPI Contribution No. 2157, 2019: 6318
    [75]
    THOMPSON M S, MORRIS R V, CLEMETT S J, et al. The effect of progressive space weathering on the organic and inorganic components of a carbonaceous chondrite[J]. Icarus, 2020, 346: 113775 doi: 10.1016/j.icarus.2020.113775
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article Views(627) PDF Downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return