Citation: | FENG Shuai, WANG Ronglan. Meteoroid and Space Debris Risk Assessment for Satellites Orbiting the Earth/Moon. Chinese Journal of Space Science, 2023, 43(4): 724-735 doi: 10.11728/cjss2023.04.2022-0065 |
[1] |
REN S Y, YANG X H, WANG R L, et al. The interaction between the LEO satellite constellation and the space debris environment[J]. Applied Sciences, 2021, 11(20): 9490 doi: 10.3390/app11209490
|
[2] |
ADAMIŠINOVÁ A. European Space Traffic Management System: Micrometeoroids and Space Debris as a Possible Threat for Future Missions[R]. Brno: Mendel University, 2022
|
[3] |
BOLEY A C, BYERS M. Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth[J]. Scientific Reports, 2021, 11(1): 10642 doi: 10.1038/s41598-021-89909-7
|
[4] |
DUZELLIER S, GORDO P, MELICIO R, et al. Space debris generation in GEO: Space materials testing and evaluation[J]. Acta Astronautica, 2022, 192: 258-275 doi: 10.1016/j.actaastro.2021.12.036
|
[5] |
OIKONOMIDOU X, BRAUN V, LEMMENS S. Guidelines for space debris and meteoroid impact risk assessment with DRAMA/MIDAS[C]//8 th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office, 2021
|
[6] |
COOKE W, MATNEY M, MOORHEAD A V, et al. A comparison of damaging meteoroid and orbital debris fluxes in earth orbit[C]//7 th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office, 2017
|
[7] |
MOORHEAD A V, MATNEY M. The ratio of hazardous meteoroids to orbital debris in near-earth space[J]. Advances in Space Research, 2021, 67(1): 384-392 doi: 10.1016/j.asr.2020.09.015
|
[8] |
KRAG H, SERRANO M, BRAUN V, et al. A 1 cm space debris impact onto the Sentinel-1 A solar array[J]. Acta Astronautica, 2017, 137: 434-443 doi: 10.1016/j.actaastro.2017.05.010
|
[9] |
HOFFMAN K D, HYDE J L, CHRISTIANSEN E L, et al. Extravehicular activity micrometeoroid and orbital debris risk assessment methodology[C]//Proceedings of the 2019 Hypervelocity Impact Symposium. Destin, FL, USA: American Society of Mechanical Engineers, 2019
|
[10] |
HOFFMAN K, HYDE J L, CHRISTIANSEN E L, et al. Comparison of risk from orbital debris and meteoroid environment models on the Extravehicular Mobility Unit (EMU)[C]//Proceedings of the 1 st International Orbital Debris Conference (IOC). Houston, Texas, United States, 2019
|
[11] |
EVANS H J, HYDE J L, CHRISTANSEN E L, et al. Consequences of micrometeoroid/orbital debris penetrations on the international space station[C]//Proceedings of the 2019 Hypervelocity Impact Symposium. Destin, FL, USA: American Society of Mechanical Engineers, 2019
|
[12] |
HYDE J L, CHRISTIANSEN E L, LEAR D M, et al. Surveys of returned ISS hardware for MMMOD impacts[C]//Proceedings of the 7 th European Conference on Space Debris. Darmstadt, Germany: ESA, 2017
|
[13] |
OLIVIERI L, FRANCESCONI A. Large constellations assessment and optimization in LEO space debris environment[J]. Advances in Space Research, 2020, 65(1): 351-363 doi: 10.1016/j.asr.2019.09.048
|
[14] |
PANOV D V, SILNIKOV M V, MIKHAYLIN A I, et al. Large-scale shielding structures in low earth orbits[J]. Acta Astronautica, 2015, 109: 153-161 doi: 10.1016/j.actaastro.2014.12.009
|
[15] |
Moorhead A V. NASA Meteoroid Engineering Model (MEM) Version 3[R]. 2020.
|
[16] |
EHLERT S. Modeling meteoroid densities for spacecraft risk assessment[J]. Journal of Space Safety Engineering, 2020, 7(3): 249-254 doi: 10.1016/j.jsse.2020.06.001
|
[17] |
BRAUN V, HORSTMANN A, LEMMENS S, et al. Recent developments in space debris environment modelling, verification and validation with MASTER[C]//Proceedings of the 8 th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office, 2021
|
[18] |
BRAUN V. Impact of debris model updates on risk assessments[C]//Proceedings of the 1 st NEO and Space Debris Detection Conference. Darmstadt, Germany: ESA Space Debris Office, 2019
|
[19] |
Flegel S, Gelhaus J, Möckel M, et al. Maintenance of the ESA MASTER Model[J]. Final Report, 2011, 21705(08)
|
[20] |
JENNISKENS P. Meteor stream activity I. The annual streams[J]. Astronomy and Astrophysics, 1994, 287: 990-1013
|
[21] |
Vavrin, Andrew B. , et al. NASA Orbital Debris Engineering Model ORDEM 3.1-Software User Guide. No. JSC-E-DAA-TN75767. 2019
|
[22] |
MANIS A, MATNEY M, ANZ-MEADOR P, et al. The Updated GEO Population for ORDEM 3.1[C]//Proceedings of the 1 st International Orbital Debris Conference. Houston, Texas, United States, 2019
|
[23] |
RODMANN J, MILLER A, TRAUD M, et al. Micrometeoroid impact risk assessment for interplanetary missions//8 th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office, 2021
|
[24] |
RYAN S, CHRISTIANSEN E L. A ballistic limit analysis programme for shielding against micrometeoroids and orbital debris[J]. Acta Astronautica, 2011, 69(5/6): 245-257
|
[25] |
CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shields[J]. International Journal of Impact Engineering, 1993, 14(1/4): 145-156
|
[26] |
MOORHEAD A V, KINGERY A, EHLERT S. NASA’s meteoroid engineering model 3 and its ability to replicate spacecraft impact rates[J]. Journal of Spacecraft and Rockets, 2020, 57(1): 160-176 doi: 10.2514/1.A34561
|
[27] |
BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris[J]. Acta Astronautica, 2019, 163: 54-61 doi: 10.1016/j.actaastro.2019.04.046
|
[28] |
LE MAY S, GEHLY S, CARTER B A, et al. Space debris collision probability analysis for proposed global broadband constellations[J]. Acta Astronautica, 2018, 151: 445-455 doi: 10.1016/j.actaastro.2018.06.036
|
[29] |
TORKY M, HASSANEIN A E, EL FIKY A H, et al. Analyzing space debris flux and predicting satellites collision probability in LEO orbits based on petri nets[J]. IEEE Access, 2019, 7: 83461-83473 doi: 10.1109/ACCESS.2019.2922835
|
[30] |
Christiansen, Eric L. Meteoroid/debris shielding. No. S-898. Houston: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 2003
|
[31] |
HU D Q, CHI R Q, LIU Y Y, et al. Sensitivity analysis of spacecraft in micrometeoroids and orbital debris environment based on panel method[J]. Defence Technology, 2023, 19: 126-142 doi: 10.1016/j.dt.2021.11.001
|
[32] |
MOORHEAD A V. Meteoroid environment modeling: The meteoroid engineering model and shower forecasting[C]//Proceedings of the Applied Space Environments Conference (ASEC) 2017: Measurements, Models, Testing & Tools. Huntsville, AL USA, 2017
|
[33] |
MURTAZOV A K. Assessing the meteoroid risk in near earth space[J]. Open Astronomy, 2018, 27(1): 144-149 doi: 10.1515/astro-2018-0025
|
[34] |
DROLSHAGEN G. Impact effects from small size meteoroids and space debris[J]. Advances in Space Research, 2008, 41(7): 1123-1131 doi: 10.1016/j.asr.2007.09.007
|