Volume 43 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
GAO Lijing, CHEN Zhimin, GUO Guohang, WANG Chunmei. Recognition of Working Pattern of Space Science Satellite Based on Ensemble Learning (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 768-779 doi: 10.11728/cjss2023.04.20220301022
Citation: GAO Lijing, CHEN Zhimin, GUO Guohang, WANG Chunmei. Recognition of Working Pattern of Space Science Satellite Based on Ensemble Learning (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 768-779 doi: 10.11728/cjss2023.04.20220301022

Recognition of Working Pattern of Space Science Satellite Based on Ensemble Learning

doi: 10.11728/cjss2023.04.20220301022 cstr: 32142.14.cjss2023.04.20220301022
  • Received Date: 2022-03-01
  • Rev Recd Date: 2022-10-11
  • Available Online: 2023-06-19
  • Aiming at the issues of space science satellite telemetry parameters, such as large amount of data, high dimension, the need of numerous artificial resource consumption for preset massive thresholds, the preset thresholds that may not be applicable, and the current monitoring methods with low scalability, a working pattern recognition method is proposed for scientific satellite based on ensemble learning. Correlation coefficient statistical characteristics and mutual information theory are used to screen and reduce the dimension of telemetry parameter data. Data resampling technology is used to solve the problem of category imbalance for the dataset. An integrated learning model is used to identify the working mode of space science satellite. The method is verified with the real telemetry parameter data of quantum science satellites. And the algorithm model can be constructed in a short time, and the overall recognition accuracy rate reaches 99.67%, which can correctly identify the majority and minority class samples. The method can provide decision-making basis for ground personnel to judge the working mode of space science satellites.

     

  • loading
  • [1]
    彭喜元, 庞景月, 彭宇, 等. 航天器遥测数据异常检测综述[J]. 仪器仪表学报, 2016, 37(9): 1929-1945 doi: 10.19650/j.cnki.cjsi.2016.09.002

    PENG Xiyuan, PANG Jingyue, PENG Yu, et al. Review on anomaly detection of spacecraft telemetry data[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 1929-1945 doi: 10.19650/j.cnki.cjsi.2016.09.002
    [2]
    MARTÍNEZ-HERAS J A, DONATI A, KIRSCH M G F, et al. New Telemetry monitoring paradigm with novelty detection[C]//SpaceOps 2012 Conference. Stockholm, Sweden: AIAA, 2012
    [3]
    TAGAWA T, YAIRI T, TAKATA N, et al. Data monitoring of spacecraft using mixture probabilistic principal component analysis and hidden Semi-Markov models[C]//Proceedings of the 3 rd International Conference on Data Mining and Intelligent Information Technology Applications. Macao, China: IEEE, 2011
    [4]
    李鑫, 高家智, 崔俊峰, 等. 一种遥测缓变参数自动判读的新方法[J]. 宇航学报, 2018, 39(5): 585-592

    LI Xin, GAO Jiazhi, CUI Junfeng, et al. A novel method of automatic interpretation for slow-varying telemetry parameters[J]. Journal of Astronautics, 2018, 39(5): 585-592
    [5]
    史欣田, 庞景月, 张新, 等. 基于集成极限学习机的卫星大数据分析[J]. 仪器仪表学报, 2018, 39(12): 81-91 doi: 10.19650/j.cnki.cjsi.J1803770

    SHI Xintian, PANG Jingyue, ZHANG Xin, et al. Satellite big data analysis based on bagging extreme learning machine[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 81-91 doi: 10.19650/j.cnki.cjsi.J1803770
    [6]
    李楠, 张云燕, 李言俊. 一种自旋稳定卫星姿态传感器数据异常的诊断方法[J]. 宇航学报, 2011, 32(6): 1327-1332

    LI Nan, ZHANG Yunyan, LI Yanjun. A diagnosis algorithm for abnormal data of spin-stabilized satellite attitude sensors[J]. Journal of Astronautics, 2011, 32(6): 1327-1332
    [7]
    徐宇航, 皮德常. 卫星异常模式挖掘方法[J]. 小型微型计算机系统, 2015, 36(9): 1988-1992

    XU Yuhang, PI Dechang. Method to mine satellite abnormal patterns[J]. Journal of Chinese Computer Systems, 2015, 36(9): 1988-1992
    [8]
    王昊天, 厉小润, 赵辽英. 基于箱型图与折点阈值边界的电缆分割方法[J]. 计算机应用与软件, 2021, 38(9): 244-249

    WANG Haotian, LI Xiaorun, ZHAO Liaoying. Cable segmentation method based on box-plot and turning point threshold boundary[J]. Computer Applications and Software, 2021, 38(9): 244-249
    [9]
    韩霞, 李秀霞, 史盛楠, 等. 基于Z分数与Sen’s斜率的研究前沿识别方法——以图书馆学领域为例[J]. 情报科学, 2020, 38(1): 93-97,139 doi: 10.13833/j.issn.1007-7634.2020.01.015

    HAN Xia, LI Xiuxia, SHI Shengnan, et al. Research fronts identification based on Z-Score and Sen’s Slope method——taking the field of library science as an example[J]. Information Science, 2020, 38(1): 93-97,139 doi: 10.13833/j.issn.1007-7634.2020.01.015
    [10]
    纪德洋, 金锋, 冬雷, 等. 基于皮尔逊相关系数的光伏电站数据修复[J]. 中国电机工程学报, 2022, 42(4): 1514-1522 doi: 10.13334/j.0258-8013.pcsee.211172

    JI Deyang, JIN Feng, DONG Lei, et al. Data repairing of photovoltaic power plant based on pearson correlation coefficient[J]. Proceedings of the CSEE, 2022, 42(4): 1514-1522 doi: 10.13334/j.0258-8013.pcsee.211172
    [11]
    徐遐龄, 胡伟, 王春明, 等. 考虑特征组合效应的电网关键稳定特征筛选方法研究[J]. 中国电机工程学报, 2018, 38(8): 2232-2238 doi: 10.13334/j.0258-8013.pcsee.171734

    XU Xialing, HU Wei, WANG Chunming, et al. Research on power systems key feature selection based on combination effect considering the stability rule[J]. Proceedings of the CSEE, 2018, 38(8): 2232-2238 doi: 10.13334/j.0258-8013.pcsee.171734
    [12]
    CHAWLA N V, JAPKOWICZ N, KOTCZ A. Editorial: special issue on learning from imbalanced data sets[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 1-3 doi: 10.1145/1007730.1007733
    [13]
    VAN DER PUTTEN P, VAN SOMEREN M. A bias-variance analysis of a real world learning problem: the CoIL challenge 2000[J]. Machine Learning, 2004, 57(1/2): 177-195 doi: 10.1023/B:MACH.0000035476.95130.99
    [14]
    CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357 doi: 10.1613/jair.953
    [15]
    BATISTA G E A P A, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20-29 doi: 10.1145/1007730.1007735
    [16]
    杨思节. 基于拉曼光谱的海水微塑料快速识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.004188

    YANG Sijie. Study on Rapid Recognition of Marine Microplastics Based on Raman Spectroscopy[D]. Harbin: Harbin Institute of Technology, 2021. DOI: 10.27061/d. cnki. ghgdu. 2021.004188
    [17]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2018: 1-415

    ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2018: 1-415
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article Views(385) PDF Downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return