Volume 43 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
HU Penghui, HU Kaixin. Instability of Viscoelastic Thermocapillary Liquid Layers with Two Free Surfaces (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 683-693 doi: 10.11728/cjss2023.04.2023.04.yg07
Citation: HU Penghui, HU Kaixin. Instability of Viscoelastic Thermocapillary Liquid Layers with Two Free Surfaces (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 683-693 doi: 10.11728/cjss2023.04.2023.04.yg07

Instability of Viscoelastic Thermocapillary Liquid Layers with Two Free Surfaces

doi: 10.11728/cjss2023.04.2023.04.yg07 cstr: 32142.14.cjss2023.04.2023.04.yg07
  • Received Date: 2023-06-15
  • Accepted Date: 2023-07-07
  • Rev Recd Date: 2023-07-13
  • Available Online: 2023-08-16
  • In microgravity environments, dual-free surface liquid layer is a promising method for growing new material crystals, stability analysis of its flow is of great significance for applications such as thin film crystallization. The instability of viscoelastic thermocapillary liquid layers with two free surfaces is examined by linear stability analysis. The critical Marangoni number (Mac) is determined as a function of the elastic number (ε) and the Prandtl number (Pr). The flow fields and energy mechanisms of preferred modes are analyzed. Three kinds of instabilities are found: oblique wave, streamwise wave and spanwise stationary mode, whose properties are all significantly affected by the elasticity. The preferred modes are the oblique wave and streamwise wave at small and large Pr. When Pr = 1, the preferred mode changes from the oblique wave to the streamwise wave, and finally the spanwise stationary mode with the increase of ε. At small Pr, the hot spots move from the surface to the interior of the liquid layer with the increase of ε. The effect of the ratio ($\zeta $) of solvent viscosity to the total viscosity on the instability mechanism and the preferred modes are demonstrated. When Pr is large, the increase of $\zeta $ often makes the flow more stable. However, for small and moderate Pr, the flow is destabilized by the increase of $\zeta $ at weak ε. Energy analysis shows that at the small Pr, the perturbation stress at the weak ε dissipates energy while it provides energy at the strong ε. At the moderate and large Pr, the primary source of energy for perturbation energy is the work done by surface tension, and the contribution of the base flow can be neglected. Comparing the double free surface liquid layer with the single free surface liquid layer, it is found that the elastic instability of the double free surface liquid layer is more prominent when the Ma number is small.

     

  • loading
  • [1]
    LIU Y, ZENG Z, ZHANG L Q, et al. Effect of crystal rotation on the instability of thermocapillary-buoyancy convection in a Czochralski model[J]. Physics of Fluids, 2021, 33(10): 104101 doi: 10.1063/5.0062615
    [2]
    BÉG O A, VENKATADRI K, PRASAD V R, et al. Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects[J]. Materials Science and Engineering:B, 2020, 261: 114722 doi: 10.1016/j.mseb.2020.114722
    [3]
    BASARAN O A, GAO H J, BHAT P P. Nonstandard inkjets[J]. Annual Review of Fluid Mechanics, 2013, 45: 85-113 doi: 10.1146/annurev-fluid-120710-101148
    [4]
    CHEN L, JIN G H, DAI Q W, et al. Droplets impacting and migrating on structured surfaces with imposed thermal gradients[J]. Journal of Tribology, 2022, 144(4): 041807 doi: 10.1115/1.4052779
    [5]
    WANG T S, SHI W Y, DUAN F. Marangoni convection instabilities in an evaporating droplet on a non-isothermal substrate[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123140 doi: 10.1016/j.ijheatmasstransfer.2022.123140
    [6]
    HU K X, ZHANG S N, CHEN Q S. Surface wave instability in the thermocapillary migration of a flat droplet[J]. Journal of Fluid Mechanics, 2023, 958: A22 doi: 10.1017/jfm.2023.77
    [7]
    KARBALAEI A, KUMAR R, CHO H J. Thermocapillarity in microfluidics—a review[J]. Micromachines, 2016, 7(1): 13 doi: 10.3390/mi7010013
    [8]
    KOWAL K N, DAVIS S H, VOORHEES P W. Thermocapillary instabilities in a horizontal liquid layer under partial basal slip[J]. Journal of Fluid Mechanics, 2018, 855: 839-859 doi: 10.1017/jfm.2018.684
    [9]
    SMITH M K, DAVIS S H. Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities[J]. Journal of Fluid Mechanics, 1983, 132: 119-144 doi: 10.1017/S0022112083001512
    [10]
    BACH C, SCHWABE D. Surface waves in thermocapillary flow-revisited[J]. The European Physical Journal Special Topics, 2015, 224(2): 319-340 doi: 10.1140/epjst/e2015-02363-5
    [11]
    LI Y R, IMAISHI N, AZAMI T, et al. Three-dimensional oscillatory flow in a thin annular pool of silicon melt[J]. Journal of Crystal Growth, 2004, 260(1/2): 28-42
    [12]
    PATNE R, AGNON Y, ORON A. Thermocapillary instabilities in a liquid layer subjected to an oblique temperature gradient[J]. Journal of Fluid Mechanics, 2021, 906: A12 doi: 10.1017/jfm.2020.747
    [13]
    CHEN E H, XU F. Transient Marangoni convection induced by an isothermal sidewall of a rectangular liquid pool[J]. Journal of Fluid Mechanics, 2021, 928: A6 doi: 10.1017/jfm.2021.795
    [14]
    HU K X, HE M, CHEN Q S, et al. Effect of gravity on the stability of viscoelastic thermocapillary liquid layers[J]. International Journal of Heat and Mass Transfer, 2018, 123: 776-786 doi: 10.1016/j.ijheatmasstransfer.2018.02.088
    [15]
    BAIOUMY B, CHEBBI R, JABBAR N A. Bingham fluid flow in the entrance region of a pipe[J]. Journal of Fluids Engineering, 2021, 143(2): 024503 doi: 10.1115/1.4048610
    [16]
    BOARO A, LAPPA M. On the competition of transverse and longitudinal modes of Marangoni convection in a three-dimensional layer of viscoelastic fluid[J]. Physics of Fluids, 2022, 34(12): 123103 doi: 10.1063/5.0131461
    [17]
    王胜, 胡开鑫. Bingham流体双自由面热毛细液层的稳定性分析[J]. 力学学报, 2022, 54(12): 3398-3407 doi: 10.6052/0459-1879-22-364

    WANG Sheng, HU Kaixin. Stability analysis of thermocapillary liquid layers with two free surfaces for a Bingham fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3398-3407 doi: 10.6052/0459-1879-22-364
    [18]
    YAN C Y, HU K X, CHEN Q S. Thermocapillary instabilities of liquid layers on an inclined plane[J]. Physics of Fluids, 2018, 30(8): 082101 doi: 10.1063/1.5039149
    [19]
    HU K X, ZHENG S, CHEN Q S. Transient growth in thermocapillary liquid layers[J]. Physical Review Fluids, 2020, 5(1): 014001 doi: 10.1103/PhysRevFluids.5.014001
    [20]
    赵诚卓, 胡开鑫. 双自由面溶质-热毛细液层的不稳定性[J]. 力学学报, 2022, 54(2): 291-300 doi: 10.6052/0459-1879-21-148

    ZHAO Chengzhuo, HU Kaixin. Instability in the solutal-thermocapillary liquid layer with two free surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 291-300 doi: 10.6052/0459-1879-21-148
    [21]
    PETTIT D. Saturday morning science videos[EB/OL]. (2003). https://blog.sciencenet.cn/blog-420554-701386.html
    [22]
    WATANABE T, KOWATA Y, UENO I. Flow transition and hydrothermal wave instability of thermocapillary-driven flow in a free rectangular liquid film[J]. International Journal of Heat and Mass Transfer, 2018, 116: 635-641 doi: 10.1016/j.ijheatmasstransfer.2017.09.059
    [23]
    UENO I, TORII T. Thermocapillary-driven flow in a thin liquid film sustained in a rectangular hole with temperature gradient[J]. Acta Astronautica, 2010, 66(7/8): 1017-1021
    [24]
    MESSMER B, LEMEE T, IKEBUKURO K, et al. Confined thermo-capillary flows in a double free-surface film with small Marangoni Numbers[J]. International Journal of Heat and Mass Transfer, 2014, 78: 1060-1067 doi: 10.1016/j.ijheatmasstransfer.2014.06.053
    [25]
    YAMAMOTO T, TAKAGI Y, OKANO Y, et al. Numerical investigation of oscillatory thermocapillary flows under zero gravity in a circular liquid film with concave free surfaces[J]. Physics of Fluids, 2016, 28(3): 032106 doi: 10.1063/1.4943246
    [26]
    HU K X, ZHAO C Z, ZHANG S N, et al. Instabilities of thermocapillary liquid layers with two free surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121217 doi: 10.1016/j.ijheatmasstransfer.2021.121217
    [27]
    SOLEYMANIHA M, FELTS J R. Design of a heated micro-cantilever optimized for thermo-capillary driven printing of molten polymer nanostructures[J]. International Journal of Heat and Mass Transfer, 2016, 101: 166-174 doi: 10.1016/j.ijheatmasstransfer.2016.04.063
    [28]
    HU K X, LIU R, HE M, et al. Elastic instability in the thermocapillary convection at low Reynolds numbers[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 250: 43-51 doi: 10.1016/j.jnnfm.2017.10.009
    [29]
    SARMA R, MONDAL P K. Thermosolutal Marangoni instability in a viscoelastic liquid film: effect of heating from the free surface[J]. Journal of Fluid Mechanics, 2021, 909: A12 doi: 10.1017/jfm.2020.880
    [30]
    DÁVALOS-OROZCO L A, CHÁVEZ A E. Thermocapillary convection in a viscoelastic fluid layer under a horizontal temperature gradient[J]. Journal of Applied Polymer Science, 1991, 49: 141-153 doi: 10.1002/app.1991.070490014
    [31]
    HU K X, HE M, CHEN Q S. Instability of thermocapillary liquid layers for Oldroyd-B fluid[J]. Physics of Fluids, 2016, 28(3): 033105 doi: 10.1063/1.4943971
    [32]
    PATNE R, AGNON Y, ORON A. Thermocapillary instability in a viscoelastic liquid layer under an imposed oblique temperature gradient[J]. Physics of Fluids, 2021, 33(1): 012107 doi: 10.1063/5.0036202
    [33]
    RAJAGOPAL K R, BHATNAGAR R K. Exact solutions for some simple flows of an Oldroyd-B fluid[J]. Acta Mechanica, 1995, 113(1/2/3/4): 233-239
    [34]
    TEITEL M, SCHWABE D, GELFGAT A Y. Experimental and computational study of flow instabilities in a model of Czochralski growth[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1343-1348
    [35]
    TOUSSAINT G, BODIGUEL H, DOUMENC F, et al. Experimental characterization of buoyancy-and surface tension-driven convection during the drying of a polymer solution[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4228-4237
    [36]
    章绍能, 胡开鑫. 黏弹性液滴热毛细迁移的对流不稳定[J]. 力学学报, 2021, 53(5): 1313-1323 doi: 10.6052/0459-1879-20-443

    ZHANG Shaoneng, HU Kaixin. Convective instability in thermocapillary migration of a viscoelastic droplet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1313-1323 doi: 10.6052/0459-1879-20-443
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(266) PDF Downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return