Volume 43 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
TIAN Zhenpeng, ZHOU Wei, YUAN Jingyi, LIU Xiaoqiang, YE Su, POUDEL Krishna, HIMES Austin, RENNINGER Heidi, WANG Jiaxin, MA Qin. Forest Canopy Height Mapping Based on Multi-source Remote Sensing Data (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1176-1193 doi: 10.11728/cjss2023.06.2023-0074
Citation: TIAN Zhenpeng, ZHOU Wei, YUAN Jingyi, LIU Xiaoqiang, YE Su, POUDEL Krishna, HIMES Austin, RENNINGER Heidi, WANG Jiaxin, MA Qin. Forest Canopy Height Mapping Based on Multi-source Remote Sensing Data (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1176-1193 doi: 10.11728/cjss2023.06.2023-0074

Forest Canopy Height Mapping Based on Multi-source Remote Sensing Data

doi: 10.11728/cjss2023.06.2023-0074 cstr: 32142.14.cjss2023.06.2023-0074
  • Received Date: 2023-07-17
  • Rev Recd Date: 2023-10-27
  • Available Online: 2023-12-04
  • Accurate estimation of spatially continuous forest canopy height is crucial for quantifying forest carbon stocks, understanding forest ecosystems, and making forest management and restoration policies. Spaceborne Light Detection and Ranging (LiDAR) can measure forest canopy height over laser footprints at semi-global the coverage, which provides a promising data source for estimating forest canopy height at national to global scales. This study used the random forest regression method to map forest canopy height by fusing Ice, Cloud and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS) measurements and Landsat-8 images, combined with terrain and climatic features, and other data to generate forest canopy height products of the maximum (Hmax) and mean height (Hmean) values at 30 meter resolution across Mississippi State of America in 2020. The results show that the mean and standard deviation of Hmax in forest area is 24.14 m and 4.24 m respectively. For the Hmean, the mean and standard deviation of Hmean in forest area were 12.04 m and 2.59 m respectively. The estimated Hmax and Hmean across Mississippi agree well with airborne measurements (Hmax: $ {R}^{2} $ = 0.486, $ {H}_{\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}} $ = 4.532 m; Hmean: $ {R}^{2} $ = 0.467, $ {H}_{\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}} $ = 2.848 m). In this study, the difference and ratio of the maximum and average values of canopy height were used to reflect the vertical structure complexity of the forest canopy. The differences of different geographical divisions, forest types, planted forests and natural forests were compared, and it was found that the complexity of loess hilly areas, deciduous forests, wetland forests and natural forests in the study area was higher. In addition, the canopy height mapping scheme proposed in this study for non-mountain plantations is of guiding significance for forest management, species diversity conservation and “carbon neutrality” assessment in the in the Yangtze River Delta and other areas dominated by non-mountain planted forest of China.

     

  • loading
  • [1]
    HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Global Change Biology, 2005, 11(6): 945-958 doi: 10.1111/j.1365-2486.2005.00955.x
    [2]
    ZELLWEGER F, BALTENSWEILER A, GINZLER C, et al. Environmental predictors of species richness in forest landscapes: Abiotic factors versus vegetation structure[J]. Journal of Biogeography, 2016, 43(6): 1080-1090 doi: 10.1111/jbi.12696
    [3]
    NÆSSET E, ØKLAND T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve[J]. Remote Sensing of Environment, 2002, 79(1): 105-115 doi: 10.1016/S0034-4257(01)00243-7
    [4]
    DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography[J]. Science of Remote Sensing, 2020, 1: 100002 doi: 10.1016/j.srs.2020.100002
    [5]
    ZHANG G, GANGULY S, NEMANI R R, et al. Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data[J]. Remote Sensing of Environment, 2014, 151: 44-56 doi: 10.1016/j.rse.2014.01.025
    [6]
    SU Y J, GUO Q H, MA Q, et al. SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. Remote Sensing, 2015, 7(9): 11202-11225 doi: 10.3390/rs70911202
    [7]
    SU Y J, GUO Q H, XUE B L, et al. Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data[J]. Remote Sensing of Environment, 2016, 173: 187-199 doi: 10.1016/j.rse.2015.12.002
    [8]
    GUO Q H, SU Y J, HU T Y, et al. Lidar boosts 3D ecological observations and Modelings: a review and perspective[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(1): 232-257 doi: 10.1109/MGRS.2020.3032713
    [9]
    NAESSET E. Determination of mean tree height of forest stands using airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52(2): 49-56 doi: 10.1016/S0924-2716(97)83000-6
    [10]
    WANG Y S, LEHTOMÄKI M, LIANG X L, et al. Is field-measured tree height as reliable as believed-A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147: 132-145 doi: 10.1016/j.isprsjprs.2018.11.008
    [11]
    LI W, NIU Z, SHANG R, et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102163 doi: 10.1016/j.jag.2020.102163
    [12]
    SAIKKU M. Mississippi forests and forestry[J]. Journal of American History, 2002, 89(1): 248
    [13]
    ZHAO X Q, GUO Q H, SU Y J, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 79-91 doi: 10.1016/j.isprsjprs.2016.03.016
    [14]
    GUO Q H, LI W K, YU H, et al. Effects of topographic variability and Lidar sampling density on several DEM interpolation methods[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(6): 701-712 doi: 10.14358/pers.76.6.701
    [15]
    NIE S, WANG C, ZENG H C, et al. A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 183-190 doi: 10.1016/j.isprsjprs.2015.07.008
    [16]
    MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260-273 doi: 10.1016/j.rse.2016.12.029
    [17]
    NEUENSCHWANDER A, PITTS K. The ATL08 land and vegetation product for the ICESat-2 Mission[J]. Remote Sensing of Environment, 2019, 221: 247-259 doi: 10.1016/j.rse.2018.11.005
    [18]
    SMITH B, FRICKER H A, GARDNER A S, et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes[J]. Science, 2020, 368(6496): 1239-1242 doi: 10.1126/science.aaz5845
    [19]
    WANG C, ZHU X X, NIE S, et al. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA[J]. Optics Express, 2019, 27(26): 38168-38179 doi: 10.1364/OE.27.038168
    [20]
    MARTINO A J, NEUMANN T A, KURTZ N T, et al. ICESat-2 mission overview and early performance[C]. Remote Sensing 2019, 11151 (111510C), https://doi.org/10.1117/12.2534938
    [21]
    ZHAO X Q, SU Y J, HU T Y, et al. A global corrected SRTM DEM product for vegetated areas[J]. Remote Sensing Letters, 2018, 9(4): 393-402 doi: 10.1080/2150704X.2018.1425560
    [22]
    LANG A C, HÄRDTLE W, BRUELHEIDE H, et al. Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China[J]. Forest Ecology and Management, 2010, 260(10): 1708-1715 doi: 10.1016/j.foreco.2010.08.015
    [23]
    FICK S E, HIJMANS R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315 doi: 10.1002/joc.5086
    [24]
    HOU W J, GAO J B, WU S H, et al. Interannual variations in growing-season NDVI and its correlation with climate variables in the Southwestern Karst Region of China[J]. Remote Sensing, 2015, 7(9): 11105-11124 doi: 10.3390/rs70911105
    [25]
    POTAPOV P, LI X Y, HERNANDEZ-SERNA A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment, 2021, 253: 112165 doi: 10.1016/j.rse.2020.112165
    [26]
    WICKHAM J, STEHMAN S V, SORENSON D G, et al. Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States[J]. Remote Sensing of Environment, 2021, 257: 112357 doi: 10.1016/j.rse.2021.112357
    [27]
    TIWARI K, NARINE L L. A comparison of machine learning and geostatistical approaches for mapping forest canopy height over the Southeastern US Using ICESat-2[J]. Remote Sensing, 2022, 14(22): 5651 doi: 10.3390/rs14225651
    [28]
    SOTHE C, GONSAMO A, LOURENÇO R B, et al. Spatially continuous mapping of forest canopy height in Canada by combining GEDI and ICESat-2 with PALSAR and sentinel[J]. Remote Sensing, 2022, 14(20): 5158 doi: 10.3390/rs14205158
    [29]
    SILVEIRA E M O, RADELOFF V C, MARTINUZZI S, et al. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery[J]. Remote Sensing of Environment, 2023, 285: 113391 doi: 10.1016/j.rse.2022.113391
    [30]
    HUANG W L, MIN W K, DING J Q, et al. Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern China[J]. Forest Ecosystems, 2022, 9: 100006 doi: 10.1016/j.fecs.2022.100006
    [31]
    PHAM T D, LE N N, HA N T, et al. Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio biosphere reserve, Vietnam[J]. Remote Sensing, 2020, 12(5): 777. doi: 10.3390/rs12050777
    [32]
    National Snow and Ice Data Center. ATL08 product data dictionary[EB/OL]. (2021-07-27)[2023-06-17]. https://icesat-2-scf.gsfc.nasa.gov
    [33]
    QUEINNEC M, WHITE J C, COOPS N C. Comparing airborne and spaceborne photon-counting LiDAR canopy structural estimates across different boreal forest types[J]. Remote Sensing of Environment, 2021, 262: 112510 doi: 10.1016/j.rse.2021.112510
    [34]
    NEUENSCHWANDER A L, MAGRUDER L A. Canopy and terrain height retrievals with ICESat-2: a first look[J]. Remote Sensing, 2019, 11(14): 1721 doi: 10.3390/rs11141721
    [35]
    MAGRUDER L, BRUNT K, NEUMANN T, et al. Passive ground-based optical techniques for monitoring the on-orbit ICESat-2 altimeter geolocation and footprint diameter[J]. Earth and Space Science, 2021, 8(10): e2020EA001414 doi: 10.1029/2020EA001414
    [36]
    LUTHCKE S B, THOMAS T C, PENNINGTON T A, et al. ICESat‐2 pointing calibration and geolocation performance[J]. Earth and Space Science, 2021, 8(3): e2020EA001494 doi: 10.1029/2020EA001494
    [37]
    LIU X Q, SU Y J, HU T Y, et al. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data[J]. Remote Sensing of Environment, 2022, 269: 112844 doi: 10.1016/j.rse.2021.112844
    [38]
    SU Y J, MA Q, GUO Q H. Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. International Journal of Digital Earth, 2017, 10(3): 307-323 doi: 10.1080/17538947.2016.1227380
    [39]
    ZHU X X, NIE S, WANG C, et al. Consistency analysis of forest height retrievals between GEDI and ICESat-2[J]. Remote Sensing of Environment, 2022, 281: 113244 doi: 10.1016/j.rse.2022.113244
    [40]
    LIN S, LI Y, LI Y H, et al. Influence of tree size, local forest structure, topography, and soil resource availability on plantation growth in Qinghai Province, China[J]. Ecological Indicators, 2021, 120: 106957 doi: 10.1016/j.ecolind.2020.106957
    [41]
    LI Y, HÄRDTLE W, BRUELHEIDE H, et al. Site and neighborhood effects on growth of tree saplings in subtropical plantations (China)[J]. Forest Ecology and Management, 2014, 327: 118-127 doi: 10.1016/j.foreco.2014.04.039
    [42]
    LUO D, JIN Z, YU Y L, et al. Effects of topography on planted trees in a headwater catchment on the Chinese Loess Plateau[J]. Forests, 2021, 12(6): 792 doi: 10.3390/f12060792
    [43]
    MALAMBO L, POPESCU S C. Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones[J]. Remote Sensing of Environment, 2021, 266: 112711 doi: 10.1016/j.rse.2021.112711
    [44]
    DU Z R, YU L, YANG J Y, et al. A global map of planting years of plantations[J]. Scientific Data, 2022, 9(1): 141. doi: 10.1038/s41597-022-01260-2
    [45]
    王云霖. 我国人工林发展研究[J]. 林业资源管理, 2019(1): 6-11

    WANG Yunlin. Review on China’s plantation development since the reform and opening up[J]. Forest Resources Management, 2019(1): 6-11
    [46]
    高伟, 叶功富, 游水生, 等. 东山岛海岸带潺槁树天然林的群落结构特征[J]. 南京师大学报(自然科学版), 2011, 34(2): 94-99

    GAO Wei, YE Gongfu, YOU Shuisheng, et al. Community characters of coastal Litsea glutinosa natural forest on Dongshan Island[J]. Journal of Nanjing Normal University (Natural Science Edition), 2011, 34(2): 94-99
    [47]
    杨子铎. 湖南栎类天然林林分结构特征及其对林分生长的影响[D]. 长沙: 中南林业科技大学, 2023

    YANG Ziduo. Structural characteristics of natural oak forests and their effects on forest growth in Hunan Province[D]. Changsha: Central South Unversity of Forestry & Technology, 2023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article Metrics

    Article Views(1192) PDF Downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return