Citation: | TIAN Zhenpeng, ZHOU Wei, YUAN Jingyi, LIU Xiaoqiang, YE Su, POUDEL Krishna, HIMES Austin, RENNINGER Heidi, WANG Jiaxin, MA Qin. Forest Canopy Height Mapping Based on Multi-source Remote Sensing Data (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1176-1193 doi: 10.11728/cjss2023.06.2023-0074 |
[1] |
HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Global Change Biology, 2005, 11(6): 945-958 doi: 10.1111/j.1365-2486.2005.00955.x
|
[2] |
ZELLWEGER F, BALTENSWEILER A, GINZLER C, et al. Environmental predictors of species richness in forest landscapes: Abiotic factors versus vegetation structure[J]. Journal of Biogeography, 2016, 43(6): 1080-1090 doi: 10.1111/jbi.12696
|
[3] |
NÆSSET E, ØKLAND T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve[J]. Remote Sensing of Environment, 2002, 79(1): 105-115 doi: 10.1016/S0034-4257(01)00243-7
|
[4] |
DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography[J]. Science of Remote Sensing, 2020, 1: 100002 doi: 10.1016/j.srs.2020.100002
|
[5] |
ZHANG G, GANGULY S, NEMANI R R, et al. Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data[J]. Remote Sensing of Environment, 2014, 151: 44-56 doi: 10.1016/j.rse.2014.01.025
|
[6] |
SU Y J, GUO Q H, MA Q, et al. SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. Remote Sensing, 2015, 7(9): 11202-11225 doi: 10.3390/rs70911202
|
[7] |
SU Y J, GUO Q H, XUE B L, et al. Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data[J]. Remote Sensing of Environment, 2016, 173: 187-199 doi: 10.1016/j.rse.2015.12.002
|
[8] |
GUO Q H, SU Y J, HU T Y, et al. Lidar boosts 3D ecological observations and Modelings: a review and perspective[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(1): 232-257 doi: 10.1109/MGRS.2020.3032713
|
[9] |
NAESSET E. Determination of mean tree height of forest stands using airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52(2): 49-56 doi: 10.1016/S0924-2716(97)83000-6
|
[10] |
WANG Y S, LEHTOMÄKI M, LIANG X L, et al. Is field-measured tree height as reliable as believed-A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147: 132-145 doi: 10.1016/j.isprsjprs.2018.11.008
|
[11] |
LI W, NIU Z, SHANG R, et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102163 doi: 10.1016/j.jag.2020.102163
|
[12] |
SAIKKU M. Mississippi forests and forestry[J]. Journal of American History, 2002, 89(1): 248
|
[13] |
ZHAO X Q, GUO Q H, SU Y J, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 79-91 doi: 10.1016/j.isprsjprs.2016.03.016
|
[14] |
GUO Q H, LI W K, YU H, et al. Effects of topographic variability and Lidar sampling density on several DEM interpolation methods[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(6): 701-712 doi: 10.14358/pers.76.6.701
|
[15] |
NIE S, WANG C, ZENG H C, et al. A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 183-190 doi: 10.1016/j.isprsjprs.2015.07.008
|
[16] |
MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260-273 doi: 10.1016/j.rse.2016.12.029
|
[17] |
NEUENSCHWANDER A, PITTS K. The ATL08 land and vegetation product for the ICESat-2 Mission[J]. Remote Sensing of Environment, 2019, 221: 247-259 doi: 10.1016/j.rse.2018.11.005
|
[18] |
SMITH B, FRICKER H A, GARDNER A S, et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes[J]. Science, 2020, 368(6496): 1239-1242 doi: 10.1126/science.aaz5845
|
[19] |
WANG C, ZHU X X, NIE S, et al. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA[J]. Optics Express, 2019, 27(26): 38168-38179 doi: 10.1364/OE.27.038168
|
[20] |
MARTINO A J, NEUMANN T A, KURTZ N T, et al. ICESat-2 mission overview and early performance[C]. Remote Sensing 2019, 11151 (111510C), https://doi.org/10.1117/12.2534938
|
[21] |
ZHAO X Q, SU Y J, HU T Y, et al. A global corrected SRTM DEM product for vegetated areas[J]. Remote Sensing Letters, 2018, 9(4): 393-402 doi: 10.1080/2150704X.2018.1425560
|
[22] |
LANG A C, HÄRDTLE W, BRUELHEIDE H, et al. Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China[J]. Forest Ecology and Management, 2010, 260(10): 1708-1715 doi: 10.1016/j.foreco.2010.08.015
|
[23] |
FICK S E, HIJMANS R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315 doi: 10.1002/joc.5086
|
[24] |
HOU W J, GAO J B, WU S H, et al. Interannual variations in growing-season NDVI and its correlation with climate variables in the Southwestern Karst Region of China[J]. Remote Sensing, 2015, 7(9): 11105-11124 doi: 10.3390/rs70911105
|
[25] |
POTAPOV P, LI X Y, HERNANDEZ-SERNA A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment, 2021, 253: 112165 doi: 10.1016/j.rse.2020.112165
|
[26] |
WICKHAM J, STEHMAN S V, SORENSON D G, et al. Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States[J]. Remote Sensing of Environment, 2021, 257: 112357 doi: 10.1016/j.rse.2021.112357
|
[27] |
TIWARI K, NARINE L L. A comparison of machine learning and geostatistical approaches for mapping forest canopy height over the Southeastern US Using ICESat-2[J]. Remote Sensing, 2022, 14(22): 5651 doi: 10.3390/rs14225651
|
[28] |
SOTHE C, GONSAMO A, LOURENÇO R B, et al. Spatially continuous mapping of forest canopy height in Canada by combining GEDI and ICESat-2 with PALSAR and sentinel[J]. Remote Sensing, 2022, 14(20): 5158 doi: 10.3390/rs14205158
|
[29] |
SILVEIRA E M O, RADELOFF V C, MARTINUZZI S, et al. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery[J]. Remote Sensing of Environment, 2023, 285: 113391 doi: 10.1016/j.rse.2022.113391
|
[30] |
HUANG W L, MIN W K, DING J Q, et al. Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern China[J]. Forest Ecosystems, 2022, 9: 100006 doi: 10.1016/j.fecs.2022.100006
|
[31] |
PHAM T D, LE N N, HA N T, et al. Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio biosphere reserve, Vietnam[J]. Remote Sensing, 2020, 12(5): 777. doi: 10.3390/rs12050777
|
[32] |
National Snow and Ice Data Center. ATL08 product data dictionary[EB/OL]. (2021-07-27)[2023-06-17]. https://icesat-2-scf.gsfc.nasa.gov
|
[33] |
QUEINNEC M, WHITE J C, COOPS N C. Comparing airborne and spaceborne photon-counting LiDAR canopy structural estimates across different boreal forest types[J]. Remote Sensing of Environment, 2021, 262: 112510 doi: 10.1016/j.rse.2021.112510
|
[34] |
NEUENSCHWANDER A L, MAGRUDER L A. Canopy and terrain height retrievals with ICESat-2: a first look[J]. Remote Sensing, 2019, 11(14): 1721 doi: 10.3390/rs11141721
|
[35] |
MAGRUDER L, BRUNT K, NEUMANN T, et al. Passive ground-based optical techniques for monitoring the on-orbit ICESat-2 altimeter geolocation and footprint diameter[J]. Earth and Space Science, 2021, 8(10): e2020EA001414 doi: 10.1029/2020EA001414
|
[36] |
LUTHCKE S B, THOMAS T C, PENNINGTON T A, et al. ICESat‐2 pointing calibration and geolocation performance[J]. Earth and Space Science, 2021, 8(3): e2020EA001494 doi: 10.1029/2020EA001494
|
[37] |
LIU X Q, SU Y J, HU T Y, et al. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data[J]. Remote Sensing of Environment, 2022, 269: 112844 doi: 10.1016/j.rse.2021.112844
|
[38] |
SU Y J, MA Q, GUO Q H. Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. International Journal of Digital Earth, 2017, 10(3): 307-323 doi: 10.1080/17538947.2016.1227380
|
[39] |
ZHU X X, NIE S, WANG C, et al. Consistency analysis of forest height retrievals between GEDI and ICESat-2[J]. Remote Sensing of Environment, 2022, 281: 113244 doi: 10.1016/j.rse.2022.113244
|
[40] |
LIN S, LI Y, LI Y H, et al. Influence of tree size, local forest structure, topography, and soil resource availability on plantation growth in Qinghai Province, China[J]. Ecological Indicators, 2021, 120: 106957 doi: 10.1016/j.ecolind.2020.106957
|
[41] |
LI Y, HÄRDTLE W, BRUELHEIDE H, et al. Site and neighborhood effects on growth of tree saplings in subtropical plantations (China)[J]. Forest Ecology and Management, 2014, 327: 118-127 doi: 10.1016/j.foreco.2014.04.039
|
[42] |
LUO D, JIN Z, YU Y L, et al. Effects of topography on planted trees in a headwater catchment on the Chinese Loess Plateau[J]. Forests, 2021, 12(6): 792 doi: 10.3390/f12060792
|
[43] |
MALAMBO L, POPESCU S C. Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones[J]. Remote Sensing of Environment, 2021, 266: 112711 doi: 10.1016/j.rse.2021.112711
|
[44] |
DU Z R, YU L, YANG J Y, et al. A global map of planting years of plantations[J]. Scientific Data, 2022, 9(1): 141. doi: 10.1038/s41597-022-01260-2
|
[45] |
王云霖. 我国人工林发展研究[J]. 林业资源管理, 2019(1): 6-11
WANG Yunlin. Review on China’s plantation development since the reform and opening up[J]. Forest Resources Management, 2019(1): 6-11
|
[46] |
高伟, 叶功富, 游水生, 等. 东山岛海岸带潺槁树天然林的群落结构特征[J]. 南京师大学报(自然科学版), 2011, 34(2): 94-99
GAO Wei, YE Gongfu, YOU Shuisheng, et al. Community characters of coastal Litsea glutinosa natural forest on Dongshan Island[J]. Journal of Nanjing Normal University (Natural Science Edition), 2011, 34(2): 94-99
|
[47] |
杨子铎. 湖南栎类天然林林分结构特征及其对林分生长的影响[D]. 长沙: 中南林业科技大学, 2023
YANG Ziduo. Structural characteristics of natural oak forests and their effects on forest growth in Hunan Province[D]. Changsha: Central South Unversity of Forestry & Technology, 2023
|