Citation: | HU Ronghai, XING Yuzhen. Retrieval methods for Tree Leaf Area Parameters Based on Terrestrial Laser Scanning (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1160-1175 doi: 10.11728/cjss2023.06.2023-0078 |
[1] |
CHEN J M, BLACK T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell and Environment, 1992, 15(4): 421-429 doi: 10.1111/j.1365-3040.1992.tb00992.x
|
[2] |
YAN G J, HU R H, LUO J H, et al. Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives[J]. Agricultural and Forest Meteorology, 2019, 265: 390-411 doi: 10.1016/j.agrformet.2018.11.033
|
[3] |
MAHOWALD N, LO F, ZHENG Y, et al. Projections of leaf area index in earth system models[J]. Earth System Dynamics, 2016, 7(1): 211-229 doi: 10.5194/esd-7-211-2016
|
[4] |
JUPP D L B, CULVENOR D S, LOVELL J L, et al. Estimating forest LAI profiles and structural parameters using a ground-based laser called Echidna[J]. Tree Physio logy, 2008, 29(2): 171-181 doi: 10.1093/treephys/tpn022
|
[5] |
刘洋, 刘荣高, 陈镜明, 等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013, 15(5): 734-743 doi: 10.3724/SP.J.1047.2013.00734
LIU Yang, LIU Ronggao, CHEN Jingming, et al. Current status and perspectives of Leaf Area Index retrieval from optical remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(5): 734-743 doi: 10.3724/SP.J.1047.2013.00734
|
[6] |
王锦地, 李小文, STRAHLER A H. 树冠叶面积体密度和叶面积指数的间接估值方法研究[J]. 环境遥感, 1995, 10(4): 288-297
WANG Jindi, LI Xiaowen, STRAHLER A H. An indirect estimating method of foliage area volume density and leaf-area index of tree crown[J]. Remote Sensing of Envi ronment China, 1995, 10(4): 288-297
|
[7] |
骆社周, 王成, 张贵宾, 等. 机载激光雷达森林叶面积指数反演研究[J]. 地球物理学报, 2013, 56(5): 1467-1475 doi: 10.6038/cjg20130505
LUO Shezhou, WANG Cheng, ZHANG Guibin, et al. Forest leaf area index (LAI) inversion using airborne LiDAR data[J]. Chinese Journal of Geophysics, 2013, 56(5): 1467-1475 doi: 10.6038/cjg20130505
|
[8] |
徐希孺, 范闻捷, 陶欣. 遥感反演连续植被叶面积指数的空间尺度效应[J]. 中国科学 D辑: 中国科学, 2009, 39 (1): 79-87
XU Xiru, FAN Wenjie, TAO Xin. The spatial scaling effect of continuous canopy Leaves Area Index retrieved by remote sensing[J]. Science in China Series D: Earth Sciences, 2009, 52 (3): 393-401
|
[9] |
BELAND M, PARKER G, SPARROW B, et al. On promoting the use of lidar systems in forest ecosystem research[J]. Forest Ecology and Management, 2019, 450: 117484 doi: 10.1016/j.foreco.2019.117484
|
[10] |
VAN LEEUWEN M, NIEUWENHUIS M. Retrieval of forest structural parameters using LiDAR remote sensing[J]. European Journal of Forest Research, 2010, 129(4): 749-770 doi: 10.1007/s10342-010-0381-4
|
[11] |
BAUWENS S, BARTHOLOMEUS H, CALDERS K, et al. Forest inventory with terrestrial LiDAR: a comparison of static and hand-held mobile laser scanning[J]. Forests, 2016, 7(6): 127
|
[12] |
NEWNHAM G, ARMSTON J, MUIR J, et al. Evaluation of Terrestrial Laser Scanners for Measuring Vegetation Structure[R]. Canberra: CSIRO, 2012
|
[13] |
ZHENG G, MOSKAL L M, KIM S H. Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 777-786 doi: 10.1109/TGRS.2012.2205003
|
[14] |
HU R H, BOURNEZ E, CHENG S Y, et al. Estimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 357-368 doi: 10.1016/j.isprsjprs.2018.07.015
|
[15] |
NGUYEN V T, FOURNIER R A, CÔTÉ J F, et al. Estimation of vertical plant area density from single return terrestrial laser scanning point clouds acquired in forest environments[J]. Remote Sensing of Environment, 2022, 279: 113115 doi: 10.1016/j.rse.2022.113115
|
[16] |
BÉLAND M, WIDLOWSKI J L, FOURNIER R A, et al. Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements[J]. Agricultural and Forest Meteorology, 2011, 151(9): 1252-1266 doi: 10.1016/j.agrformet.2011.05.004
|
[17] |
MA L X, ZHENG G, EITEL J U H, et al. Determining woody-to-total area ratio using terrestrial laser scanning (TLS)[J]. Agricultural and Forest Meteorology, 2016, 228/229: 217-228 doi: 10.1016/j.agrformet.2016.06.021
|
[18] |
YUN T, CAO L, AN F, et al. Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns[J]. Agricultural and Forest Meteorology, 2019, 276/277: 107610 doi: 10.1016/j.agrformet.2019.06.009
|
[19] |
OLSOY P J, MITCHELL J J, LEVIA D F, et al. Estimation of big sagebrush leaf area index with terrestrial laser scanning[J]. Ecological Indicators, 2016, 61: 815-821 doi: 10.1016/j.ecolind.2015.10.034
|
[20] |
阎广建, 胡容海, 罗京辉, 等. 叶面积指数间接测量方法[J]. 遥感学报, 2016, 20(5): 958-978
YAN Guangjian, HU Ronghai, LUO Jinghui, et al. Review of indirect methods for leaf area index measurement[J]. Journal of Remote Sensing, 2016, 20(5): 958-978
|
[21] |
WANG Y, FANG H L. Estimation of LAI with the LiDAR technology: a review[J]. Remote Sensing, 2020, 12(20): 3457 doi: 10.3390/rs12203457
|
[22] |
MUUMBE T P, BAADE J, SINGH J, et al. Terrestrial laser scanning for vegetation analyses with a special focus on savannas[J]. Remote Sensing, 2021, 13(3): 507 doi: 10.3390/rs13030507
|
[23] |
CIFUENTES R, VAN DER ZANDE D, FARIFTEH J, et al. Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data[J]. Agricultural and Forest Meteorology, 2014, 194: 230-240 doi: 10.1016/j.agrformet.2014.04.013
|
[24] |
ZHU X, SKIDMORE A K, WANG T J, et al. Improving leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning[J]. Agricultural and Forest Meteorology, 2018, 263: 276-286 doi: 10.1016/j.agrformet.2018.08.026
|
[25] |
LI Y M, GUO Q H, SU Y J, et al. Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 308-316 doi: 10.1016/j.isprsjprs.2017.06.006
|
[26] |
MOORTHY I, MILLER J R, BERNI J A J, et al. Field characterization of olive ( Olea europaea L. ) tree crown architecture using terrestrial laser scanning data[J]. Agricultural and Forest Meteorology, 2011, 151(2): 204-214 doi: 10.1016/j.agrformet.2010.10.005
|
[27] |
MKAOUAR A, KALLEL A, BEN RABAH Z, et al. Joint estimation of leaf area density and leaf angle distribution using TLS point cloud for forest stands[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11095-11115 doi: 10.1109/JSTARS.2021.3120521
|
[28] |
WEI S S, YIN T G, DISSEGNA M A, et al. An assessment study of three indirect methods for estimating leaf area density and leaf area index of individual trees[J]. Agricultural and Forest Meteorology, 2020, 292/293: 108101 doi: 10.1016/j.agrformet.2020.108101
|
[29] |
ZHENG G, MOSKAL L M. Computational-geometry-based retrieval of effective leaf area index using terrestrial laser scanning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3958-3969 doi: 10.1109/TGRS.2012.2187907
|
[30] |
ZHAO K G, GARCÍA M, LIU S, et al. Terrestrial lidar remote sensing of forests: maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution[J]. Agricultural and Forest Meteorology, 2015, 209/210: 100-113 doi: 10.1016/j.agrformet.2015.03.008
|
[31] |
YUN T, AN F, LI W Z, et al. A novel approach for retrieving tree leaf area from ground-based LiDAR[J]. Remote Sensing, 2016, 8(11): 942 doi: 10.3390/rs8110942
|
[32] |
PUESCHEL P, NEWNHAM G, HILL J. Retrieval of gap fraction and effective plant area index from phase-shift terrestrial laser scans[J]. Remote Sensing, 2014, 6(3): 2601-2627 doi: 10.3390/rs6032601
|
[33] |
GROTTI M, CALDERS K, ORIGO N, et al. An intensity, image-based method to estimate gap fraction, canopy openness and effective leaf area index from phase-shift terrestrial laser scanning[J]. Agricultural and Forest Meteorology, 2020, 280: 107766 doi: 10.1016/j.agrformet.2019.107766
|
[34] |
PASCU I S, DOBRE A C, BADEA O, et al. Estimating forest stand structure attributes from terrestrial laser scans[J]. Science of the Total Environment, 2019, 691: 205-215 doi: 10.1016/j.scitotenv.2019.06.536
|
[35] |
YANG X Y, STRAHLER A H, SCHAAF C B, et al. Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®)[J]. Remote Sensing of Environment, 2013, 135: 36-51 doi: 10.1016/j.rse.2013.03.020
|
[36] |
ZHAO F, YANG X Y, SCHULL M A, et al. Measuring effective leaf area index, foliage profile, and stand height in New England forest stands using a full-waveform ground-based lidar[J]. Remote Sensing of Environment, 2011, 115(11): 2954-2964 doi: 10.1016/j.rse.2010.08.030
|
[37] |
HILKER T, VAN LEEUWEN M, COOPS N C, et al. Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand[J]. Trees, 2010, 24(5): 819-832 doi: 10.1007/s00468-010-0452-7
|
[38] |
STRAHLER A H, JUPP D L B, WOODCOCK C E, et al. Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®)[J]. Canadian Journal of Remote Sensing, 2008, 34(S2): S426-S440
|
[39] |
郭庆华, 苏艳军, 胡天宇, 等. 激光雷达森林生态应用: 理论、方法及实例[M]. 北京: 高等教育出版社, 2018
GUO Qinghua, SU Yanjun, HU Tianyu, et al. Lidar Principles, Processing and Applications in Forest Ecology[M]. Beijing: Higher Education Press, 2018
|
[40] |
GRAU E, DURRIEU S, FOURNIER R, et al. Estimation of 3D vegetation density with terrestrial laser scanning data using voxels. A sensitivity analysis of influencing parameters[J]. Remote Sensing of Environment, 2017, 191: 373-388 doi: 10.1016/j.rse.2017.01.032
|
[41] |
WANG Y, FANG H L, ZHANG Y H, et al. Retrieval and validation of vertical LAI profile derived from airborne and spaceborne LiDAR data at a deciduous needleleaf forest site[J]. GIScience & Remote Sensing, 2023, 60(1): 2214987
|
[42] |
DE WIT C T. Photosynthesis of Leaf Canopies[R]. Wageningen: Pudoc, 1965: 1-57
|
[43] |
MONSI M, SAEKI T. On the factor light in plant communities and its importance for matter production[J]. Annals of Botany, 2005, 95(3): 549-567
|
[44] |
ROSS J. The Radiation Regime and Architecture of Plant Stands[M]. Dordrecht: Springer, 1981
|
[45] |
NILSON T. A theoretical analysis of the frequency of gaps in plant stands[J]. Agricultural Meteorology, 1971, 8: 25-38 doi: 10.1016/0002-1571(71)90092-6
|
[46] |
WILSON J W. Inclined point quadrats[J]. New Phytologist, 1960, 59(1): 1-7 doi: 10.1111/j.1469-8137.1960.tb06195.x
|
[47] |
YAN G J, JIANG H L, LUO J H, et al. Quantitative evaluation of leaf inclination angle distribution on leaf area index retrieval of coniferous canopies[J]. Journal of Remote Sensing, 2021, 2021: 2708904
|
[48] |
MILLER J B. A formula for average foliage density[J]. Australian Journal of Botany, 1967, 15(1): 141-144 doi: 10.1071/BT9670141
|
[49] |
胡容海, 阎广建. 对Beer-Lambert定律间接测量森林LAI的误差低估分析[J]. 地球信息科学学报, 2012, 14(3): 366-375 doi: 10.3724/SP.J.1047.2012.00366
HU Ronghai, YAN Guangjian. Indirect measurement of forest LAI to deal with the underestimation problem based on Beer-Lambert law[J]. Journal of Geo-Information Science, 2012, 14(3): 366-375 doi: 10.3724/SP.J.1047.2012.00366
|
[50] |
LANG A R G, XIANG Y Q. Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies[J]. Agricultural and Forest Meteorology, 1986, 37(3): 229-243 doi: 10.1016/0168-1923(86)90033-X
|
[51] |
CHEN J M, CIHLAR J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index[J]. Applied Optics, 1995, 34(27): 6211-6222 doi: 10.1364/AO.34.006211
|
[52] |
LEBLANC S G, CHEN J M, FERNANDES R, et al. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests[J]. Agricultural and Forest Meteorology, 2005, 129(3/4): 187-207
|
[53] |
WALTER J M N, FOURNIER R A, SOUDANI K, et al. Integrating clumping effects in forest canopy structure: an assessment through hemispherical photographs[J]. Canadian Journal of Remote Sensing, 2003, 29(3): 388-410 doi: 10.5589/m03-011
|
[54] |
HU R H, YAN G J, MU X H, et al. Indirect measurement of leaf area index on the basis of path length distribution[J]. Remote Sensing of Environment, 2014, 155: 239-247 doi: 10.1016/j.rse.2014.08.032
|
[55] |
HERBERT T J. Area projections of fisheye photographic lenses[J]. Agricultural and Forest Meteorology, 1987, 39(2/3): 215-223
|
[56] |
DANSON F M, HETHERINGTON D, MORSDORF F, et al. Forest canopy gap fraction from terrestrial laser scanning[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 157-160 doi: 10.1109/LGRS.2006.887064
|
[57] |
ZHENG G, MOSKAL L M. Spatial variability of terrestrial laser scanning based leaf area index[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 19: 226-237 doi: 10.1016/j.jag.2012.05.002
|
[58] |
SFU. Gap Light Analyzer (GLA)[M]. Burnaby: Simon Fraser University, 1999
|
[59] |
ARSLAN A E, ERTEN E, INAN M. A comparative study for obtaining effective Leaf Area Index from single Terrestrial Laser Scans by removal of wood material[J]. Measurement, 2021, 178: 109262 doi: 10.1016/j.measurement.2021.109262
|
[60] |
FLYNN W R M, OWEN H J F, GRIEVE S W D, et al. Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest[J]. Biogeosciences, 2023, 20(13): 2769-2784 doi: 10.5194/bg-20-2769-2023
|
[61] |
WOODGATE W, JONES S D, SUAREZ L, et al. Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction, and leaf area index in diverse forest systems[J]. Agricultural and Forest Meteorology, 2015, 205: 83-95 doi: 10.1016/j.agrformet.2015.02.012
|
[62] |
MOORTHY I, MILLER J R, HU B X, et al. Retrieving crown leaf area index from an individual tree using ground-based lidar data[J]. Canadian Journal of Remote Sensing, 2008, 34(3): 320-332 doi: 10.5589/m08-027
|
[63] |
ANTONARAKIS A S, RICHARDS K S, BRASINGTON J, et al. Determining leaf area index and leafy tree roughness using terrestrial laser scanning[J]. Water Resources Research, 2010, 46(6): W06510
|
[64] |
CHEN Y M, ZHANG W M, HU R H, et al. Estimation of forest leaf area index using terrestrial laser scanning data and path length distribution model in open-canopy forests[J]. Agricultural and Forest Meteorology, 2018, 263: 323-333 doi: 10.1016/j.agrformet.2018.09.006
|
[65] |
BÉLAND M, WIDLOWSKI J L, FOURNIER R A. A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR[J]. Environmental Modelling & Software, 2014, 51: 184-189
|
[66] |
DURRIEU S, ALLOUIS T, FOURNIER R A, et al. Spatial quantification of vegetation density from terrestrial laser scanner data for characterization of 3D forest structure at plot level[C]//Proceedings of the SilviLaser 2008. Edinburgh: SilviLaser, 2008
|
[67] |
SOMA M, PIMONT F, DUPUY J L. Sensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: a simulation experiment[J]. Remote Sensing of Environment, 2021, 257: 112354 doi: 10.1016/j.rse.2021.112354
|
[68] |
SOMA M, PIMONT F, DURRIEU S, et al. Enhanced measurements of leaf area density with T-LiDAR: evaluating and calibrating the effects of vegetation heterogeneity and scanner properties[J]. Remote Sensing, 2018, 10(10): 1580 doi: 10.3390/rs10101580
|
[69] |
WU D, PHINN S, JOHANSEN K, et al. Estimating changes in leaf area, leaf area density, and vertical leaf area profile for mango, avocado, and macadamia tree crowns using terrestrial laser scanning[J]. Remote Sensing, 2018, 10(11): 1750 doi: 10.3390/rs10111750
|
[70] |
BÉLAND M, BALDOCCHI D D, WIDLOWSKI J L, et al. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR[J]. Agricultural and Forest Meteorology, 2014, 184: 82-97 doi: 10.1016/j.agrformet.2013.09.005
|
[71] |
SOMA M, PIMONT F, ALLARD D, et al. Mitigating occlusion effects in Leaf Area Density estimates from Terrestrial LiDAR through a specific kriging method[J]. Remote Sensing of Environment, 2020, 245: 111836 doi: 10.1016/j.rse.2020.111836
|
[72] |
CÔTÉ J F, FOURNIER R A, EGLI R. An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR[J]. Environmental Modelling & Software, 2011, 26(6): 761-777
|
[73] |
HANCOCK S, ANDERSON K, DISNEY M, et al. Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: calibration and validation with voxelised terrestrial lidar[J]. Remote Sensing of Environment, 2017, 188: 37-50 doi: 10.1016/j.rse.2016.10.041
|
[74] |
HOSOI F, OMASA K. Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging[J]. Journal of Experimental Botany, 2007, 58(12): 3463-3473 doi: 10.1093/jxb/erm203
|
[75] |
SCHNEIDER F D, KüKENBRINK D, SCHAEPMAN M E, et al. Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR[J]. Agricultural and Forest Meteorology, 2019, 268: 249-257 doi: 10.1016/j.agrformet.2019.01.033
|
[76] |
TAHERIAZAD L, MOGHADAS H, SANCHEZ-AZOFEIFA A. Calculation of leaf area index in a Canadian boreal forest using adaptive voxelization and terrestrial LiDAR[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83: 101923 doi: 10.1016/j.jag.2019.101923
|
[77] |
LEVY E B. The point method for pasture analysis[J]. N Z J Agric, 1933, 46: 267-279
|
[78] |
WILSON J W. Analysis of the spatial distribution of foliage by two-dimensional point quadrats[J]. New Phytologist, 1959, 58(1): 92-99 doi: 10.1111/j.1469-8137.1959.tb05340.x
|
[79] |
HOSOI F, OMASA K. Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3610-3618 doi: 10.1109/TGRS.2006.881743
|
[80] |
HOSOI F, NAKAI Y, OMASA K. Estimation and error analysis of woody canopy leaf area density profiles using 3-D airborne and ground-based scanning lidar remote-sensing techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2215-2223 doi: 10.1109/TGRS.2009.2038372
|
[81] |
LI Y M, GUO Q H, TAO S L, et al. Derivation, validation, and sensitivity analysis of terrestrial laser scanning-based leaf area index[J]. Canadian Journal of Remote Sensing, 2016, 42(6): 719-729 doi: 10.1080/07038992.2016.1220829
|
[82] |
SU W, ZHU D H, HUANG J X, et al. Estimation of the vertical leaf area profile of corn ( Zea mays) plants using terrestrial laser scanning (TLS)[J]. Computers and Electronics in Agriculture, 2018, 150: 5-13 doi: 10.1016/j.compag.2018.03.037
|
[83] |
XIE X S, YANG Y Z, LI W Z, et al. Estimation of leaf area index in a typical northern tropical secondary monsoon rainforest by different indirect methods[J]. Remote Sensing, 2023, 15(6): 1621 doi: 10.3390/rs15061621
|
[84] |
BAILEY B N, MAHAFFEE W F. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data[J]. Measurement Science and Technology, 2017, 28(6): 064006 doi: 10.1088/1361-6501/aa5cfd
|
[85] |
PIMONT F, ALLARD D, SOMA M, et al. Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR[J]. Remote Sensing of Environment, 2018, 215: 343-370 doi: 10.1016/j.rse.2018.06.024
|
[86] |
BÉLAND M, KOBAYASHI H. Mapping forest leaf area density from multiview terrestrial lidar[J]. Methods in Ecology and Evolution, 2021, 12(4): 619-633 doi: 10.1111/2041-210X.13550
|
[87] |
YOU H K, LI S H, MA L X, et al. Leaf area index retrieval for broadleaf trees by envelope fitting method using terrestrial laser scanning data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5
|
[88] |
XU Y F, LI S H, YOU H K, et al. Retrieval of canopy gap fraction from terrestrial laser scanning data based on the monte carlo method[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5
|
[89] |
WEISS M, BARET F, SMITH G J, et al. Review of methods for in situ Leaf Area Index (LAI) determination[J]. Agricultural and Forest Meteorology, 2004, 121(1/2): 37-53
|
[90] |
ROBERTS S D, DEAN T J, EVANS D L, et al. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions[J]. Forest Ecology and Management, 2005, 213(1/2/3): 54-70
|
[91] |
FARID A, GOODRICH D C, BRYANT R, et al. Using airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates[J]. Journal of Arid Environments, 2008, 72(1): 1-15 doi: 10.1016/j.jaridenv.2007.04.010
|
[92] |
POPE G, TREITZ P. Leaf Area Index (LAI) estimation in boreal mixedwood forest of ontario, canada using Light Detection and Ranging (LiDAR) and WorldView-2 imagery[J]. Remote Sensing, 2013, 5(10): 5040-5063 doi: 10.3390/rs5105040
|
[93] |
QU Y H, SHAKER A, SILVA C A, et al. Remote sensing of leaf area index from LiDAR height percentile metrics and comparison with MODIS product in a selectively logged tropical forest area in eastern amazonia[J]. Remote Sensing, 2018, 10(6): 970 doi: 10.3390/rs10060970
|
[94] |
RICHARDSON J J, MOSKAL L M, KIM S H. Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR[J]. Agricultural and Forest Meteorology, 2009, 149(6/7): 1152-1160
|
[95] |
LOVELL J L, JUPP D L B, CULVENOR D S, et al. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests[J]. Canadian Journal of Remote Sensing, 2003, 29(5): 607-622 doi: 10.5589/m03-026
|
[96] |
TAO S L, WU F F, GUO Q H, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110: 66-76 doi: 10.1016/j.isprsjprs.2015.10.007
|
[97] |
LI W K, GUO Q H, JAKUBOWSKI M K, et al. A new method for segmenting individual trees from the lidar point cloud[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(1): 75-84
|
[98] |
FU H P, LI H, DONG Y Q, et al. Segmenting individual tree from TLS point clouds using improved DBSCAN[J]. Forests, 2022, 13(4): 566 doi: 10.3390/f13040566
|
[99] |
INDIRABAI I, NAIR M V H, JAISHANKER R N, et al. Terrestrial laser scanner based 3D reconstruction of trees and retrieval of leaf area index in a forest environment[J]. Ecological Informatics, 2019, 53: 100986 doi: 10.1016/j.ecoinf.2019.100986
|
[100] |
ROUZBEH KARGAR A, MACKENZIE R, ASNER G P, et al. A density-based approach for leaf area index assessment in a complex forest environment using a terrestrial laser scanner[J]. Remote Sensing, 2019, 11(15): 1791 doi: 10.3390/rs11151791
|