Volume 43 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
FANG Chao, WANG Sheng, LIU Guihong, DU Yanlei, ZHAO Yaming, YU Yang, YANG Xiaofeng. Spatio-temporal Distribution Characteristics of Arctic Ice Eddies Based on SAR Satellite Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1125-1134 doi: 10.11728/cjss2023.06.2023-0088
Citation: FANG Chao, WANG Sheng, LIU Guihong, DU Yanlei, ZHAO Yaming, YU Yang, YANG Xiaofeng. Spatio-temporal Distribution Characteristics of Arctic Ice Eddies Based on SAR Satellite Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1125-1134 doi: 10.11728/cjss2023.06.2023-0088

Spatio-temporal Distribution Characteristics of Arctic Ice Eddies Based on SAR Satellite Observations

doi: 10.11728/cjss2023.06.2023-0088 cstr: 32142.14.cjss2023.06.2023-0088
  • Received Date: 2023-08-18
  • Rev Recd Date: 2023-10-10
  • Available Online: 2023-11-14
  • The complex interaction between cold and warm ocean currents in the Arctic Ocean creates favorable conditions for the formation and growth of eddies. In the marginal ice zone of the Arctic, some of the upper ice floes, resulting in the formation of distinctive rotational features. These features, which contain traces of ice floes, are referred to as “ice eddies” in this paper. Ice eddies accelerate the melting of the upper ice floes through vertical heat transfer, which affects the development of the marginal ice zone and indirectly regulates the global climate. In this paper, a study is conducted on the detection, identification, and spatial and temporal characterization of Arctic ice eddies using high-resolution Synthetic Aperture Radar (SAR) satellite images of 2022. Firstly, a training dataset is constructed using preprocessed SAR images, and the YOLOv7 target detection model is used to train the model. Then, the process of human-supervised visual identification is conducted based on the results of detection and identification, resulting in the identification of a total of 3615 cyclonic ice eddies and 1482 anticyclonic ice eddies. Finally, the ice eddies are characterized using the visual identification results mentioned above. The statistical results show that ice eddies in the Arctic Ocean are primarily generated from July to November. Their spatial distribution is concentrated along the eastern coast of Greenland and in the north-central Greenland Sea. The diameters of the ice eddies range from 3.85 to 114.9 km. 99% of the eddies are smaller than 60 km, with an average diameter of 21.2 km. 97% of the eddies have sea-ice coverage ranging from 20% to 70%, with an average sea-ice coverage of 41.76%. The results of the ice eddies detection, identification, and spatial and temporal characterization in this paper provide valuable methodological references and remote sensing analysis information for analyzing marine phenomena and conducting climate research in the Arctic region.

     

  • loading
  • [1]
    D'ASARO E A. Observations of small eddies in the Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 1988, 93(C6): 6669-6684 doi: 10.1029/JC093iC06p06669
    [2]
    JOHANNESSEN J A, RØED L P, WAHL T. Eddies detected in ERS-1 SAR images and simulated in reduced gravity model[J]. International Journal of Remote Sensing, 1993, 14(11): 2203-2213 doi: 10.1080/01431169308954029
    [3]
    MANLEY T O, HUNKINS K. Mesoscale eddies of the arctic ocean[J]. Journal of Geophysical Research: Oceans, 1985, 90(C3): 4911-4930 doi: 10.1029/JC090iC03p04911
    [4]
    SPALL M A, PICKART R S, FRATANTONI P S, et al. Western Arctic shelfbreak eddies: Formation and transport[J]. Journal of Physical Oceanography, 2008, 38(8): 1644-1668 doi: 10.1175/2007JPO3829.1
    [5]
    GILL A E, GREEN J S A, SIMMONS A J. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(7): 509-528
    [6]
    PEDLOSKY J. On the radiation of meso-scale energy in the mid-ocean[J]. Deep Sea Research, 1977, 24(6): 591-600 doi: 10.1016/0146-6291(77)90529-X
    [7]
    MENEGHELLO G, MARSHALL J, LIQUE C, et al. Genesis and decay of mesoscale baroclinic eddies in the seasonally ice-covered interior arctic ocean[J]. Journal of Physical Oceanography, 2021, 51(1): 115-129 doi: 10.1175/JPO-D-20-0054.1
    [8]
    CASSIANIDES A, LIQUE C, KOROSOV A. Ocean eddy signature on SAR‐derived sea ice drift and vorticity[J]. Geophysical Research Letters, 2021, 48(6): e2020GL092066 doi: 10.1029/2020GL092066
    [9]
    李威, 王琦, 马继瑞, 等. 台湾以东黑潮锋的中尺度过程研究[J]. 海洋通报, 2011, 30(5): 518-528 doi: 10.3969/j.issn.1001-6392.2011.05.007

    LI Wei, WANG Qi, MA Jirui, et al. Study on the meso-scale process of the Kuroshio front to the east of Taiwan[J]. Marine Science Bulletin, 2011, 30(5): 518-528 doi: 10.3969/j.issn.1001-6392.2011.05.007
    [10]
    FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608-612 doi: 10.1038/ngeo1863
    [11]
    ROBINSON A R. Overview and summary of eddy science[M]//ROBINSON A R. Eddies in Marine Science. Berlin: Springer, 1983: 3-15
    [12]
    CHEN G X, GAN J P, XIE Q, et al. Eddy heat and salt transports in the South China Sea and their seasonal modulations[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05021
    [13]
    WANG X D, LI W, QI Y Q, et al. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 61: 21-33 doi: 10.1016/j.dsr.2011.11.006
    [14]
    CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606
    [15]
    CARPENTER J R, TIMMERMANS M L. Deep mesoscale eddies in the Canada Basin, Arctic Ocean[J]. Geophysical Research Letters, 2012, 39(20): L20602
    [16]
    ZHAO M N, TIMMERMANS M L, COLE S, et al. Characterizing the eddy field in the Arctic Ocean halocline[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8800-8817 doi: 10.1002/2014JC010488
    [17]
    ZHAO M N, TIMMERMANS M L, COLE S, et al. Evolution of the eddy field in the Arctic Ocean's Canada Basin, 2005–2015[J]. Geophysical Research Letters, 2016, 43(15): 8106-8114 doi: 10.1002/2016GL069671
    [18]
    VON APPEN W J, WEKERLE C, HEHEMANN L, et al. Observations of a submesoscale cyclonic filament in the marginal ice zone[J]. Geophysical Research Letters, 2018, 45(12): 6141-6149 doi: 10.1029/2018GL077897
    [19]
    TOOLE J M, KRISHFIELD R A, TIMMERMANS M L, et al. The ice-tethered profiler: Argo of the Arctic[J]. Oceanography, 2011, 24(3): 126-135 doi: 10.5670/oceanog.2011.64
    [20]
    KOZLOV I E, ARTAMONOVA A V, MANUCHARYAN G E, et al. Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones[J]. Journal of Geophysical Research: Oceans, 2019, 124(9): 6601-6616 doi: 10.1029/2019JC015113
    [21]
    CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216 doi: 10.1016/j.pocean.2011.01.002
    [22]
    JOHANNESSEN J A, SHUCHMAN R A, DIGRANES G, et al. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1996, 101(C3): 6651-6667 doi: 10.1029/95JC02962
    [23]
    JOHANNESSEN J A, KUDRYAVTSEV V, AKIMOV D, et al. On radar imaging of current features: 2. Mesoscale eddy and current front detection[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07017
    [24]
    KOZLOV I E, ATADZHANOVA O A. Eddies in the marginal ice zone of fram strait and svalbard from spaceborne SAR observations in winter[J]. Remote Sensing, 2022, 14(1): 134
    [25]
    LI X F, LIU B, ZHENG G, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584-1605 doi: 10.1093/nsr/nwaa047
    [26]
    BHAVYA SREE B, YASHWANTH BHARADWAJ V, NEELIMA N. An inter-comparative survey on state-of-the-art detectors—R-CNN, YOLO, and SSD[M]//REDDY A N R, MARLA D, FAVORSKAYA M N, et al. Intelligent Manufacturing and Energy Sustainability: Proceedings of ICIMES. Singapore: Springer, 2021
    [27]
    TERVEN J, CORDOVA-ESPARZA D M. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond[OL]. arXiv preprint arXiv: 230400501, 2023
    [28]
    WANG X N, WANG X G, LI C, et al. Data-attention-YOLO (DAY): A comprehensive framework for mesoscale eddy identification[J]. Pattern Recognition, 2022, 131: 108870 doi: 10.1016/j.patcog.2022.108870
    [29]
    CAO L J, ZHANG D J, GUO Q, et al. Ocean Mesoscale Eddies Identification Based on Yolof[C]//IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia: IEEE, 2022
    [30]
    KHACHATRIAN E, SANDALYUK N, LOZOU P. Eddy detection in the marginal ice zone with sentinel-1 data using YOLOv5[J]. Remote Sensing, 2023, 15(9): 2244 doi: 10.3390/rs15092244
    [31]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016
    [32]
    WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada: IEEE, 2023
    [33]
    BONDEVIK E. Studies of eddies in the marginal ice zone along the east Greenland current using spaceborne synthetic aperture radar (SAR)[D]. Bergen: The University of Bergen, 2011
    [34]
    PEROVICH D K, JONES K F. The seasonal evolution of sea ice floe size distribution[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8767-8777 doi: 10.1002/2014JC010136
    [35]
    MCWILLIAMS J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472 (2189): 20160117
    [36]
    STRONG C, RIGOR I G. Arctic marginal ice zone trending wider in summer and narrower in winter[J]. Geophysical Research Letters, 2013, 40(18): 4864-4868 doi: 10.1002/grl.50928
    [37]
    MANUCHARYAN G E, THOMPSON A F. Submesoscale sea ice-ocean interactions in marginal ice zones[J]. Journal of Geophysical Research:Oceans, 2017, 122(12): 9455-9475 doi: 10.1002/2017JC012895
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(756) PDF Downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return