Volume 43 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
REN Shihe, HAN Yanhong, LI Jingshi, ZHAO Yaming, KUANG Xiaodi, WU Xiangyu, YANG Xiaofeng. Oceanic Front Detection Model Based on U-Net Network (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1091-1099 doi: 10.11728/cjss2023.06.2023-0097
Citation: REN Shihe, HAN Yanhong, LI Jingshi, ZHAO Yaming, KUANG Xiaodi, WU Xiangyu, YANG Xiaofeng. Oceanic Front Detection Model Based on U-Net Network (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1091-1099 doi: 10.11728/cjss2023.06.2023-0097

Oceanic Front Detection Model Based on U-Net Network

doi: 10.11728/cjss2023.06.2023-0097 cstr: 32142.14.cjss2023.06.2023-0097
  • Received Date: 2023-09-05
  • Rev Recd Date: 2023-11-13
  • Available Online: 2023-12-12
  • As a  boundary  of two water masses with different properties, oceanic fronts have important influences on many fields such as fishery, marine military and environmental protection. How to quickly and accurately implement automatic detection and identification of ocean front is of great scientific significance for ocean monitoring and forecasting. In this paper, the deep learning image segmentation network is combined with the method of extracting frontal features, and the detection models of frontal area and frontal line are established by using U-Net architecture. Meanwhile, the residual unit is used to improve the feature extraction network in the processes of encoding and decoding. The results show that the deep learning frontal detection model can accurately extract the features of frontal area and frontal line. The Dice coefficients reach 0.92 and 0.97 respectively, achieving a good detection performance. In this paper, the model is trained by the sample data of different frontal thresholds. The comparison results show that the accuracy of model is significantly improved after the threshold of  sample set is reduced.

     

  • loading
  • [1]
    BELKIN I M. Remote sensing of ocean fronts in marine ecology and fisheries[J]. Remote Sensing, 2021, 13(5): 883 doi: 10.3390/rs13050883
    [2]
    任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563 doi: 10.11867/j.issn.1001-8166.2015.05.0552

    REN Shihe, WANG Hui, LIU Na. Review of ocean front in Chinese marginal seas and frontal forecasting[J]. Advances in Earth Science, 2015, 30(5): 552-563 doi: 10.11867/j.issn.1001-8166.2015.05.0552
    [3]
    XING Q W, YU H Q, LIU Y, et al. Application of a fish habitat model considering mesoscale oceanographic features in evaluating climatic impact on distribution and abundance of Pacific saury ( Cololabis saira)[J]. Progress in Oceanography, 2022, 201: 102743 doi: 10.1016/j.pocean.2022.102743
    [4]
    WOODSON C B, LITVIN S Y. Ocean fronts drive marine fishery production and biogeochemical cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(6): 1710-1715
    [5]
    BURNETT W, HARPER S, PRELLER R, et al. Overview of operational ocean forecasting in the US Navy: Past, present, and future[J]. Oceanography, 2014, 27(3): 24-31 doi: 10.5670/oceanog.2014.65
    [6]
    BELKIN I M, CORNILLON P C, SHERMAN K. Fronts in large marine ecosystems[J]. Progress in Oceanography, 2009, 81(1/2/3/4): 223-236
    [7]
    ORAM J J, MCWILLIAMS J C, STOLZENBACH K D. Gradient-based edge detection and feature classification of sea-surface images of the Southern California Bight[J]. Remote Sensing of Environment, 2008, 112(5): 2397-2415 doi: 10.1016/j.rse.2007.11.010
    [8]
    REN S H, ZHU X M, DREVILLON M, et al. Detection of SST fronts from a high-resolution model and its preliminary results in the South China Sea[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38(2): 387-403 doi: 10.1175/JTECH-D-20-0118.1
    [9]
    CAYULA J F, CORNILLON P. Edge detection algorithm for SST images[J]. Journal of Atmospheric and Oceanic Technology, 1992, 9(1): 67-80 doi: 10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
    [10]
    XING Q W, YU H Q, WANG H, et al. An improved algorithm for detecting mesoscale ocean fronts from satellite observations: Detailed mapping of persistent fronts around the China Seas and their long-term trends[J]. Remote Sensing of Environment, 2023, 294: 113627 doi: 10.1016/j.rse.2023.113627
    [11]
    CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698 doi: 10.1109/TPAMI.1986.4767851
    [12]
    国家海洋环境预报中心. 海洋温度锋的特征参数提取方法和装置: 中国, 113111785A[P]. 2021-07-13

    National Marine Environmental Forecasting Center. Method and device for extracting characteristic parameters of ocean thermal fronts: CN, 113111785A[P]. 2021-07-13
    [13]
    XIE C, GUO H, DONG J Y. LSENet: Location and seasonality enhanced network for multiclass ocean front detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4207609
    [14]
    SUN X, WANG C G, DONG J Y, et al. A multiscale deep framework for ocean fronts detection and fine-grained location[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 178-182 doi: 10.1109/LGRS.2018.2869647
    [15]
    中国海洋大学. 海洋锋面的精细化识别方法、系统、设备、终端及应用: 中国, 112508079A[P]. 2021-03-16

    Ocean University of China. Method, system, equipment, terminal and application of fine detection of oceanic fronts: CN, 112508079A[P]. 2021-03-16
    [16]
    FELT V, KACKER S, KUSTERS J, et al. Fast ocean front detection using deep learning edge detection models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4204812
    [17]
    LIMA E, SUN X, YANG Y T, et al. Application of deep convolutional neural networks for ocean front recognition[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042610
    [18]
    LIMA E, SUN X, DONG J Y, et al. Learning and transferring convolutional neural network knowledge to ocean front recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 354-358 doi: 10.1109/LGRS.2016.2643000
    [19]
    LI Q Y, ZHONG G Q, XIE C, et al. Weak edge identification network for ocean front detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1501905
    [20]
    曹维东, 解翠, 韩冰, 等. 融合深度学习的自动化海洋锋精细识别[J]. 计算机工程, 2020, 46(10): 266-274 doi: 10.19678/j.issn.1000-3428.0055985

    CAO Weidong, XIE Cui, HAN Bing, et al. Automatic fine recognition of ocean front fused with deep learning[J]. Computer Engineering, 2020, 46(10): 266-274 doi: 10.19678/j.issn.1000-3428.0055985
    [21]
    LI Y D, LIANG J H, DA H R, et al. A deep learning method for ocean front extraction in remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1502305
    [22]
    LGUENSAT R, SUN M, FABLET R, et al. EddyNet: A deep neural network for pixel-wise classification of oceanic eddies[C]//Proceeding of IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 1764-1767
    [23]
    DONLON C J, MARTIN M, STARK J, et al. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system[J]. Remote Sensing of Environment, 2012, 116: 140-158 doi: 10.1016/j.rse.2010.10.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article Views(725) PDF Downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return