Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
ZHENG Dandan, CHEN Liang, WANG Junjiang, LIU Wen. Deep Learning Prediction Method for f0F2 Parameters Based on the Ionospheric Parameter Similarity Features (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 763-771 doi: 10.11728/cjss2024.05.2023-0110
Citation: ZHENG Dandan, CHEN Liang, WANG Junjiang, LIU Wen. Deep Learning Prediction Method for f0F2 Parameters Based on the Ionospheric Parameter Similarity Features (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 763-771 doi: 10.11728/cjss2024.05.2023-0110

Deep Learning Prediction Method for f0F2 Parameters Based on the Ionospheric Parameter Similarity Features

doi: 10.11728/cjss2024.05.2023-0110 cstr: 32142.14.cjss2024.05.2023-0110
  • Received Date: 2023-10-09
  • Rev Recd Date: 2024-01-20
  • Available Online: 2024-03-16
  • The ionosphere is an important component of the solar terrestrial space environment, and the critical frequency f0F2 parameter is one of the most important and complex ionospheric parameters. The changes in f0F2 parameters will have a certain degree of impact on communication, navigation, radar and other technologies, so predicting f0F2 parameters has important research significance and application value. This article proposes a deep learning prediction method that integrates the characteristics of f0F2 parameter changes. A model combining bidirectional long short-term memory neural network BiLSTM network and ionospheric parameter similarity features is used to predict the ionospheric critical frequency f0F2 parameter 24 hours in advance. The results show that the average relative error of BiLSTM combined with ionospheric parameter similarity model in predicting f0F2 parameters is about 8%~10%. Compared with the Long Short-Term Memory (LSTM) model, the average relative error has decreased by about 6% to 7%, while compared with the BiLSTM model, the average relative error has decreased by about 4% to 5%. The prediction results of the f0F2 parameter for different latitude detection stations show that as the latitude decreases, the difficulty of predicting the f0F2 parameter increases, the prediction errors of the three models increase, and the prediction accuracy decreases. The analysis of the prediction results of f0F2 parameters during geomagnetic storms shows that the predictive performance of the three models will be affected to varying degrees during the occurrence of geomagnetic storms, and the prediction error will increase. Compared to the calm period, the average relative error of the three models has increased by about 1% to 4%. During geomagnetic storms, compared with LSTM and BiLSTM models, BiLSTM combined with ionospheric parameter similarity feature models has better predictive performance for f0F2 parameters and better predictive performance. This method can also be applied to the prediction research of other ionospheric parameters such as Total Electron Content (TEC), hmF2, etc., and has a very broad application prospect.

     

  • loading
  • [1]
    BUONSANTO M J. Ionospheric storms — a review[J]. Space Science Reviews, 1999, 88(3): 563-601 doi: 10.1023/a:1005107532631
    [2]
    BILITZA D, REINISCH B W. International reference ionosphere 2007: improvements and new parameters[J]. Advances in Space Research, 2008, 42(4): 599-609 doi: 10.1016/j.asr.2007.07.048
    [3]
    BILITZA D, ALTADILL D, REINISCH B, et al. The international reference ionosphere: model update 2016[C]//EGU General Assembly 2016. Vienna: EGU, 2016: EGU2016-9671
    [4]
    COSPAR/URSI Working Group on IRI, BILITZA D. International reference ionosphere (1990)[J]. Planetary and Space Science, 1992, 40(4): 544
    [5]
    STANISLAWSKA I, ZBYSZYNSKI Z. Forecasting of the ionospheric quiet and disturbed f0F2 values at a single location[J]. Radio Science, 2001, 36(5): 1065-1071 doi: 10.1029/1999RS002242
    [6]
    CHAN A H Y, CANNON P S. Nonlinear forecasts of f0F2: variation of model predictive accuracy over time[J]. Annales Geophysicae, 2002, 20(7): 1031-1038 doi: 10.5194/angeo-20-1031-2002
    [7]
    张小红, 任晓东, 吴风波, 等. 自回归移动平均模型的电离层总电子含量短期预报[J]. 测绘学报, 2014, 43(2): 118-124

    ZHANG Xiaohong, REN Xiaodong, WU Fengbo, et al. Short-term TEC prediction of ionosphere based on ARIMA model[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 118-124
    [8]
    袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048

    YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural networkormalsize[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048
    [9]
    GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471 doi: 10.1162/089976600300015015
    [10]
    MOON S, KIM Y H, KIM J H, et al. Forecasting the ionospheric F2 parameters over Jeju Station (33.43°N, 126.30°E) by using long short-term memory[J]. Journal of the Korean Physical Society, 2020, 77(12): 1265-1273 doi: 10.3938/JKPS.77.1265
    [11]
    SRIVANI I, PRASAD G S V, RATNAM D V. A deep learning-based approach to forecast ionospheric delays for GPS signals[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1180-1184 doi: 10.1109/LGRS.2019.2895112
    [12]
    SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]//Proceedings of 2019 IEEE International Conference on Big Data. Los Angeles: IEEE, 2019: 3285-3292
    [13]
    HU A Q, ZHANG K F. Using bidirectional long short-term memory method for the height of F2 peak forecasting from ionosonde measurements in the Australian region[J]. Remote Sensing, 2018, 10(10): 1658 doi: 10.3390/rs10101658
    [14]
    RAO T V, SRIDHAR M, RATNAM D V, et al. A bidirectional long short-term memory-based ionospheric f0F2 and hmF2 models for a single station in the low latitude region[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8005405 doi: 10.1109/LGRS.2020.3045702
    [15]
    鞠平, 姜薇, 赵夏阳, 等. 96点短期负荷预测方法及其应用[J]. 电力系统自动化, 2001, 25(22): 32-36

    JU Ping, JIANG Wei, ZHAO Xiayang, et al. Ninety-six points short-term load forecasting-theory & applications[J]. Automation of Electric Power Systems, 2001, 25(22): 32-36
    [16]
    金海峰, 熊信艮, 吴耀武. 基于相似性原理的短期负荷预测方法[J]. 电力系统自动化, 2001, 25(23): 45-48 doi: 10.3321/j.issn:1000-1026.2001.23.011

    JIN Haifeng, XIONG Xingen, WU Yaowu. Short-term load forecasting based on analogous theory[J]. Automation of Electric Power Systems, 2001, 25(23): 45-48 doi: 10.3321/j.issn:1000-1026.2001.23.011
    [17]
    冯静, 柳文, 凡俊梅, 等. 一种电离层短期预报的新方法[J]. 装备环境工程, 2009, 6(3): 15-20 doi: 10.3969/j.issn.1672-9242.2009.03.004

    FENG Jing, LIU Wen, FAN Junmei, et al. A new method for short-term ionospheric forecast[J]. Equipment Environmental Engineering, 2009, 6(3): 15-20 doi: 10.3969/j.issn.1672-9242.2009.03.004
    [18]
    柳文, 焦培南, 冯静, 等. 电离层参数的相似日短期预测方法[J]. 电波科学学报, 2010, 25(2): 240-247 doi: 10.13443/j.cjors.2010.02.003

    LIU Wen, JIAO Peinan, FENG Jing, et al. Method of similar days for ionospheric parameter short-term forecasting[J]. Chinese Journal of Radio Science, 2010, 25(2): 240-247 doi: 10.13443/j.cjors.2010.02.003
    [19]
    REINISCH B W, GALKIN I A. Global Ionospheric Radio Observatory (GIRO)[J]. Earth, Planets and Space, 2011, 63(4): 377-381 doi: 10.5047/eps.2011.03.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article Views(360) PDF Downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return