Citation: | WANG Kexin, WANG Zhenzhan. Advances in the Study of the Methods for Detecting the Earth Magnetic Field from Passive Microwave Remote Sensing (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 818-831 doi: 10.11728/cjss2024.05.2023-0117 |
[1] |
徐文耀. 地球电磁现象物理学[M]. 合肥: 中国科学技术大学出版社, 2009
XU Wenyao. Physics of Electromagnetic Phenomena of the Earth[M]. Hefei: University of Science and Technology of China Press, 2009
|
[2] |
HULOT G, SABAKA T J, OLSEN N, et al. The present and future geomagnetic field[J]. Treatise on Geophysics (Second Edition), 2015, 5: 33-78
|
[3] |
姜乙. 联合全球卫星模型和航磁数据的中国大陆地区岩石圈磁场建模研究[D]. 南京: 南京信息工程大学, 2020
JIANG Yi. Research of Regional Lithospheric Field Modelling in Continent China Combining Global Satellite Models and Aeromagnetic Data[D]. Nanjing: Nanjing University of Information Science & Technology, 2020
|
[4] |
冯彦, 孙涵, 蒋勇, 等. 20世纪中国地区主磁场变化研究[J]. 地震学报, 2013, 35(6): 865-875 doi: 10.3969/j.issn.0253-3782.2013.06.01
FENG Yan, SUN Han, JIANG Yong, et al. Variation of the main magnetic field in Chinese mainland during 20th century[J]. Acta Seismologica Sinica, 2013, 35(6): 865-875 doi: 10.3969/j.issn.0253-3782.2013.06.01
|
[5] |
郭鑫. 基于磁阻效应的地磁场探测研究[D]. 成都: 电子科技大学, 2015
GUO Xin. Research on the Detection of Magnetic Field Based on Magnetoresistive[D]. Chengdu: University of Electronic Science and Technology of China, 2015
|
[6] |
张晓旭. 基于钠原子共振荧光的地磁测量系统研究[D]. 北京: 北京科技大学, 2020
ZHANG Xiaoxu. Research on A Geomagnetic Measurement System Based on the Resonance Fluorescence of Sodium Atoms[D]. Beijing: University of Science and Technology Beijing, 2020
|
[7] |
孟庆奎, 舒晴, 徐光晶, 等. 国际地磁台网发展现状与展望[J]. 地震地磁观测与研究, 2019, 40(5): 79-84 doi: 10.3969/j.issn.1003-3246.2019.05.011
MENG Qingkui, SHU Qing, XU Guangjing, et al. Development status and prospect of international geomagnetic network[J]. Seismological and Geomagnetic Observation and Research, 2019, 40(5): 79-84 doi: 10.3969/j.issn.1003-3246.2019.05.011
|
[8] |
程德福, 陈军, 周志坚. 多星协同式卫星磁测技术发展综述[J]. 地球物理学进展, 2017, 32(6): 2304-2309 doi: 10.6038/pg20170603
CHENG Defu, CHEN Jun, ZHOU Zhijian. Progress of detecting magnetic field technology in a constellation of satellites[J]. Progress in Geophysics, 2017, 32(6): 2304-2309 doi: 10.6038/pg20170603
|
[9] |
Christensen F E, Lüuhr H, Hulot G. Swarm: A constellation to study the Earth’s magnetic field[J]. Earth, Planets and Space, 2006, 58 (4): 351-358. DOI: https://doi.org/10.1186/BF03351933
|
[10] |
申旭辉, 泽仁志玛, 袁仕耿, 等. 中国“张衡一号”电磁监测卫星计划进展[J]. 城市与减灾, 2021(4): 27-32 doi: 10.3969/j.issn.1671-0495.2021.04.005
SHEN Xuhui, ZEREN Zhima, YUAN Shigeng, et al. Progress on China’s first Seismo-electromagnetic satellite[J]. City and Disaster Reduction, 2021(4): 27-32 doi: 10.3969/j.issn.1671-0495.2021.04.005
|
[11] |
泽仁志玛, 刘大鹏, 孙晓英, 等. 张衡一号电磁卫星在轨情况及主要的科学成果[J]. 地球与行星物理论评(中英文), 2023, 54(4): 455-465
ZEREN Zhima, LIU Dapeng, SUN Xiaoying, et al. Current status and scientific progress of the Zhangheng-1 satellite mission[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(4): 455-465
|
[12] |
KANE T J, HILLMAN P D, DENMAN C A, et al. Laser remote magnetometry using mesospheric sodium[J]. Journal of Geophysical Research: Space Physics, 2018, 123(8): 6171-6188 doi: 10.1029/2018JA025178
|
[13] |
BUDKER D, ROMALIS M. Optical magnetometry[J]. Nature Physics, 2007, 3(4): 227-234 doi: 10.1038/nphys566
|
[14] |
HIGBIE J M, ROCHESTER S M, PATTON B, et al. Magnetometry with mesospheric sodium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3522-3525 doi: 10.1073/pnas.1013641108
|
[15] |
HAPPER W, MACDONALD G J, MAX C E, et al. Atmospheric-turbulence compensation by resonant optical backscattering from the sodium layer in the upper atmosphere[J]. Journal of the Optical Society of America A, 1994, 11(1): 263-276 doi: 10.1364/JOSAA.11.000263
|
[16] |
BUSTOS F P, CALIA D B, BUDKER D, et al. Remote sensing of geomagnetic fields and atomic collisions in the mesosphere[J]. Nature Communications, 2018, 9(1): 3981 doi: 10.1038/s41467-018-06396-7
|
[17] |
KAWAHARA T D, KITAHARA T, KOBAYASHI F, et al. Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69°S, 39°E), Antarctica[J]. Geophysical Research Letters, 2002, 29(15): 1709 doi: 10.1029/2002GL015244
|
[18] |
方欣. 钠测温测风激光雷达的研制及重力波动量通量的探测[D]. 合肥: 中国科学技术大学, 2012
FANG Xin. Sodium Temperature and Wind Lidar Development and Gravity Wave Momentum Flux Observation[D]. Hefei: University of Science and Technology of China, 2012
|
[19] |
HU X, YAN Z A, GUO S Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 56(4/5): 417-423 doi: 10.1007/s11434-010-4306-x
|
[20] |
SHE C Y, SHERMAN J, YUAN T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophysical Research Letters, 2003, 30(6): 1319 doi: 10.1029/2002GL016412
|
[21] |
程永强. 可重部署钠层测风测温激光雷达观测与研究[D]. 北京: 中国科学院国家空间科学中心, 2016
CHENG Yongqiang. Research and Observation of Relocatable Sodium Wind/Temperature Lidar[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2016
|
[22] |
DOGARIU A, MILES R B. Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization[J]. Applied optics, 2011, 50(4): 68-73 doi: 10.1364/AO.50.000A68
|
[23] |
DOGARIU A, CHNG T L, MILES R B. Towards remote magnetic anomaly detection using radar REMPI[C]//2014 Conference on Lasers and Electro-Optics (CLEO): Science and Innovations 2014. San Jose: Optical Society of America, 2014: SM4E. 4. DOI: 10.1364/cleo_si.2014.sm4e.4
|
[24] |
DOGARIU A, STEIN C, GLASER A, et al. Long range trace detection by radar REMPI[C]//Proceedings of SPIE 8024, Advanced Environmental, Chemical, and Biological Sensing Technologies VIII. Orlando: SPIE, 2011: 80240G. DOI: 10.1117/12.883982
|
[25] |
GALEA C A, SHNEIDER M N, DOGARIU A, et al. Radar REMPI measurements in the presence of a magnetic field[C]//AIAA Scitech 2019 Forum. San Diego: American Institute of Aeronautics and Astronautics, 2019. DOI: 10.2514/6.2019-0195
|
[26] |
种洋, 常宜峰, 柴洪洲, 等. 不同卫星轨道高度对地壳磁场反演的影响研究[J]. 地球物理学报, 2021, 64(3): 796-804 doi: 10.6038/cjg2021N0349
CHONG Yang, CHANG Yifeng, CHAI Hongzhou, et al. Analysis on the inversion influence of crustal geomagnetic field at different satellite orbital altitudes[J]. Chinese Journal of Geophysics, 2021, 64(3): 796-804 doi: 10.6038/cjg2021N0349
|
[27] |
常宜峰. 卫星磁测数据处理与地磁场模型反演理论与方法研究[D]. 郑州: 解放军信息工程大学, 2015
CHANG Yifeng. Research on Satellite Geomagnetic Data Process and Geomagnetic Model Recovery Theory and Method[D]. Zhengzhou: PLA Information Engineering University, 2015
|
[28] |
徐冰. 国外磁力探测卫星的发展[J]. 国际太空, 2015(9): 16-21
XU Bing. Development of foreigh geomagnetic exploration satellites[J]. Space International, 2015(9): 16-21
|
[29] |
PURUCKER M. Advances in remote sensing of magnetic fields[J]. Eos, Transactions American Geophysical Union, 2014, 95(38): 343
|
[30] |
ZEEMAN P. XXXII. On the influence of magnetism on the nature of the light emitted by a substance[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1897, 43(262): 226-239 doi: 10.1080/14786449708620985
|
[31] |
HARTMANN G K, DEGENHARDT W, RICHARDS M L, et al. Zeeman splitting of the 61 Gigahertz oxygen (O2) line in the mesosphere[J]. Geophysical Research Letters, 1996, 23(17): 2329-2332 doi: 10.1029/96GL01043
|
[32] |
HAN Y, WENG F, LIU Q, et al. A fast radiative transfer model for SSMIS upper atmosphere sounding channels[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11121 doi: 10.1029/2006JD008208
|
[33] |
ERIKSSON P, BUEHLER S A, DAVIS C P, et al. ARTS, the atmospheric radiative transfer simulator, version 2[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(10): 1551-1558 doi: 10.1016/j.jqsrt.2011.03.001
|
[34] |
LARSSON R, BUEHLER S A, ERIKSSON P, et al. A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133: 445-453 doi: 10.1016/j.jqsrt.2013.09.006
|
[35] |
NAVAS-GUZMÁN F, KÄMPFER N, MURK A, et al. Zeeman effect in atmospheric O2 measured by ground-based microwave radiometry[J]. Atmospheric Measurement Techniques, 2015, 8(4): 1863-1874 doi: 10.5194/amt-8-1863-2015
|
[36] |
YEE J H, GJERLOEV J, WU D, et al. First application of the Zeeman technique to remotely measure auroral electrojet intensity from space[J]. Geophysical Research Letters, 2017, 44(20): 10134-10139 doi: 10.1002/2017GL074909
|
[37] |
OCHIAI S, BARON P, NISHIBORI T, et al. SMILES-2 mission for temperature, wind, and composition in the whole atmosphere[J]. SOLA, 2017, 13A (Special_Edition): 13-18. DOI: 10.2151/sola.13A-003
|
[38] |
BARON P, OCHIAI S, DUPUY E, et al. Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)[J]. Atmospheric Measurement Techniques, 2020, 13(1): 219-237 doi: 10.5194/amt-13-219-2020
|
[39] |
LAUNDAL K M, YEE J H, MERKIN V G, et al. Electrojet estimates from mesospheric magnetic field measurements[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): e2020JA028644 doi: 10.1029/2020JA028644
|
[40] |
YEE J H, GJERLOEV J, WU D. Remote sensing of magnetic fields induced by electrojets from space: measurement techniques and sensor design[M]//WANG W B, ZHANG Y L, PAXTON L J. Upper Atmosphere Dynamics and Energetics. Hoboken: American Geophysical Union, 2021: 451-468. DOI: 10.1002/9781119815631.ch21
|
[41] |
KASAI Y, SAGAWA H, KURODA T, et al. Overview of the Martian atmospheric submillimetre sounder FIRE[J]. Planetary and Space Science, 2012, 63-64: 62-82 doi: 10.1016/j.pss.2011.10.013
|
[42] |
LARSSON R, RAMSTAD R, MENDROK J, et al. A method for remote sensing of weak planetary magnetic fields: simulated application to Mars[J]. Geophysical Research Letters, 2013, 40(19): 5014-5018 doi: 10.1002/grl.50964
|
[43] |
LARSSON R, MILZ M, ERIKSSON P, et al. Martian magnetism with orbiting sub-millimeter sensor: simulated retrieval system[J]. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6(1): 27-37 doi: 10.5194/gi-6-27-2017
|
[44] |
LARSSON R, KASAI Y, KURODA T, et al. Mars submillimeter sensor on microsatellite: sensor feasibility study[J]. Geoscientific Instrumentation, Methods and Data Systems, 2018, 7(4): 331-341 doi: 10.5194/gi-7-331-2018
|
[45] |
YAMADA T, BARON P, NEARY L, et al. Observation capability of a ground-based terahertz radiometer for vertical profiles of oxygen and water abundances in Martian atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4106311 doi: 10.1109/TGRS.2022.3152271
|