Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
CAO Jifeng, YANG Xiaohua, WANG Ronglan, YU Shengxian, LUO Bingxian. Orbit Anomaly Detection Technology Based on Segmentation Optimization (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 917-927 doi: 10.11728/cjss2024.05.2023-0122
Citation: CAO Jifeng, YANG Xiaohua, WANG Ronglan, YU Shengxian, LUO Bingxian. Orbit Anomaly Detection Technology Based on Segmentation Optimization (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 917-927 doi: 10.11728/cjss2024.05.2023-0122

Orbit Anomaly Detection Technology Based on Segmentation Optimization

doi: 10.11728/cjss2024.05.2023-0122 cstr: 32142.14.cjss2024.05.2023-0122
  • Received Date: 2023-11-01
  • Rev Recd Date: 2024-03-01
  • Available Online: 2024-05-22
  • In recent years, the large number of deployments of low-orbit giant constellation satellites have a significant impact on the operational safety of low-orbit satellites in orbit, and it is critical to detect orbital anomalies of constellation satellites in time. As a result, this study picks the Starlink satellite constellation as the research objects for detecting orbit anomaly and presents an improved orbit anomaly detection approach - segmentation optimization. Based on the concept of dynamic optimization, the approach improves the orbit anomaly detection method by using satellite orbit semi-major axis data as an analysis parameter, transforming it from threshold screening to optimization search. First, by assuming the segmentation points and randomly distributing them across the entire semi-major axis data series, the data in the time window are randomly segmented. Based on the variance of the segmented data, each segment's loss function is built. The iterative function are then designed using the loss function for optimization iterations. In order to determine the optimal segmentation method, the random segmentation is finally optimized with the goal of minimizing the sum of the total loss functions. This research finds that the anomaly detection effect is the best for the semi-major axis data by the differential processing after evaluating a range of data. The segmentation optimization approach has various sensitivities to different data after removing the noisy data. In conclusion, this work uses the TLE (Two-line element) data and the ephemeris data from the Starlink satellite for example verification, which was launched on 28 February 2023. The method's effectiveness in detecting orbital anomaly of constellation satellites is demonstrated, which are simple and efficient.

     

  • loading
  • [1]
    JOHNSON N L. Environmentally-induced debris sources[J]. Advances in Space Research, 2004, 34(5): 993-999 doi: 10.1016/j.asr.2003.02.029
    [2]
    PATERA R P. Space event detection method[J]. Journal of Spacecraft and Rockets, 2008, 45(3): 554-559 doi: 10.2514/1.30348
    [3]
    KELECY T, HALL D, HAMADA K, et al. Satellite maneuver detection using two-line element (TLE) data[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Maui: Maui Economic Development Board, 2007
    [4]
    董云峰, 苏建敏. 利用小波分析识别空间目标的轨道机动[J]. 宇航学报, 2004, 25(2): 213-218 doi: 10.3321/j.issn:1000-1328.2004.02.019

    DONG Yunfeng, SU Jianmin. Detection of space target orbit maneuver by wavelet analysis[J]. Journal of Astronautics, 2004, 25(2): 213-218 doi: 10.3321/j.issn:1000-1328.2004.02.019
    [5]
    杨旭, 刘静, 吴相彬, 等. 利用TLE数据分析LEO卫星轨道异常的新方法-综合判据法[J]. 空间科学学报, 2011, 31(2): 223-228 doi: 10.11728/cjss2011.02.223

    YANG Xu, LIU Jing, WU Xiangbin, et al. New method to analyse the orbital abnormal of LEO satellite using TLE data-compositive criterion[J]. Chinese Journal of Space Science, 2011, 31(2): 223-228 doi: 10.11728/cjss2011.02.223
    [6]
    王荣兰, 刘卫, 刘四清, 等. 一种基于TLE数据的轨道异常分析方法[J]. 空间科学学报, 2014, 34(2): 208-213 doi: 10.11728/cjss2014.02.208

    WANG Ronglan, LIU Wei, LIU Siqing, et al. An orbital anomaly analysis method based on TLE data[J]. Chinese Journal of Space Science, 2014, 34(2): 208-213 doi: 10.11728/cjss2014.02.208
    [7]
    张涛涛, 白显宗, 郝嘉, 等. 基于预报偏差的LEO航天器轨道异常检测[J]. 中国空间科学技术, 2012, 32(5): 40-46,68 doi: 10.3780/j.issn.1000-758X.2012.05.007

    ZHANG Taotao, BAI Xianzong, HAO Jia, et al. LEO spacecraft orbit anomaly detection based on prediction dispersion[J]. Chinese Space Science and Technology, 2012, 32(5): 40-46,68 doi: 10.3780/j.issn.1000-758X.2012.05.007
    [8]
    LI T, CHEN L. Historical-orbital-data-based method for monitoring the operational status of satellites in low Earth orbit[J]. Acta Astronautica, 2018, 151: 88-94 doi: 10.1016/j.actaastro.2018.06.010
    [9]
    LI T, CHEN L. Space event detection method based on cluster analysis of satellite historical orbital data[J]. Acta Astronautica, 2019, 160: 414-420. doi: 10.1016/j.actaastro.2019.04.038
    [10]
    刘劲宏, 吴晨韵, 徐劲, 等. 基于期望最大算法的空间事件及异常值探测[J]. 空间科学学报, 2022, 42(6): 1185-1192 doi: 10.11728/cjss2022.06.211124123

    LIU Jinghong, WU Chenyun, XU Jin, et al. Space event and outlier detection based on expectation maximization algorithm[J]. Chinese Journal of Space Science, 2022, 42(6): 1185-1192 doi: 10.11728/cjss2022.06.211124123
    [11]
    LIU Wei, WANG Ronglan, LIU Siqing, et al. Analysis of satellite drag coefficient based on wavelet transformation[J]. Journal of Astronautics, 2015, 36(2): 142-150 (刘卫, 王荣兰, 刘四清, 等. 基于小波变换的卫星阻力系数分析[J]. 宇航学报, 2015, 36(2): 142-150
    [12]
    TRUONG C, OUDRE L, VAYATIS N. Selective review of offline change point detection methods[J]. Signal Processing, 2020, 167: 107299 doi: 10.1016/j.sigpro.2019.107299
    [13]
    JACKSON B, SCARGLE J D, BARNES D, et al. An algorithm for optimal partitioning of data on an interval[J]. IEEE Signal Processing Letters, 2005, 12(2): 105-108 doi: 10.1109/LSP.2001.838216
    [14]
    PEBAY P P. Formulas for robust, one-pass parallel computation of covariances and arbitrary-order statistical moments[R]. Albuquerque: Sandia National Laboratories, 2008. DOI: 10.2172/1028931
    [15]
    TUKEY J W, MCLAUGHLIN D H. Less vulnerable confidence and significance procedures for location based on a single sample: Trimming/Winsorization 1[J]. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), 1963, 25(3): 331-352
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(355) PDF Downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return