Citation: | WU Zhujun, ZHANG Xin, PANG Yudi, DENG Yulin, WANG Zhimin. Space Radiation-induced Impacts on Gut Flora, Metabolites and Multisystem Diseases (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 873-883 doi: 10.11728/cjss2024.05.2023-0126 |
[1] |
吴季. 深空探测的现状、展望与建议[J]. 科技导报, 2021, 39(3): 80-87
WU Ji. Deep space exploration: status, expectation and suggestion[J]. Science Technology Review, 2021, 39(3): 80-87
|
[2] |
张颖一, 张伟. 国外载人深空探测现状及发展趋势分析[J]. 中国航天, 2019(11): 54-59
ZHANG Yingyi, ZHANG Wei. Analysis of the status and development trend of manned deep space exploration[J]. Aerospace China, 2019(11): 54-59
|
[3] |
GRIGORIEV A I, KOZLOVSKAYA I B, POTAPOV A N. Goals of biomedical support of a mission to mars and possible approaches to achieving them[J]. Aviation, Space, and Environmental Medicine, 2002, 73(4): 379-384
|
[4] |
SETLOW R B. The hazards of space travel[J]. EMBO Reports, 2003, 4(11): 1013-1016 doi: 10.1038/sj.embor.7400016
|
[5] |
TESEI D, JEWCZYNKO A, LYNCH A M, et al. Understanding the complexities and changes of the astronaut microbiome for successful long-duration space missions[J]. Life, 2022, 12(4): 495 doi: 10.3390/life12040495
|
[6] |
DEMONTIS G C, GERMANI M M, CAIANI E G, et al. Human pathophysiological adaptations to the space environment[J]. Frontiers in Physiology, 2017, 8: 547 doi: 10.3389/fphys.2017.00547
|
[7] |
GRIMM D, GROSSE J, WEHLAND M, et al. The impact of microgravity on bone in humans[J]. Bone, 2016, 87: 44-56 doi: 10.1016/j.bone.2015.12.057
|
[8] |
KOKHAN V S, MATVEEVA M I, MUKHAMETOV A, et al. Risk of defeats in the central nervous system during deep space missions[J]. Neuroscience & Biobehavioral Reviews, 2016, 71: 621-632
|
[9] |
BEVELACQUA J J, MORTAZAVI S M J. Commentary: immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions[J]. Frontiers in Immunology, 2018, 9: 2024 doi: 10.3389/fimmu.2018.02024
|
[10] |
BENTON E R, BENTON E V. Space radiation dosimetry in low-earth orbit and beyond[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 184(1/2): 255-294
|
[11] |
ARENA C, DE MICCO V, MACAEVA E, et al. Space radiation effects on plant and mammalian cells[J]. Acta Astronautica, 2014, 104(1): 419-431 doi: 10.1016/j.actaastro.2014.05.005
|
[12] |
张朝宁, 李金田, 刘永琦. 辐射旁效应及其机制研究进展[J]. 辐射防护通讯, 2015, 35(3): 19-24
ZHANG Chaoning, LI Jintian, LIU Yongqi. Advances in research of radiation induced bystander effect and its mechanism[J]. Radiation Protection Bulletin, 2015, 35(3): 19-24
|
[13] |
YATAGAI F, ISHIOKA N. Are biological effects of space radiation really altered under the microgravity environment?[J]. Life Sciences in Space Research, 2014, 3: 76-89 doi: 10.1016/j.lssr.2014.09.005
|
[14] |
徐绸, 何平, 刘长庭. 空间环境对肠道菌群的影响[J]. 航天医学与医学工程, 2016, 29(4): 297-300
XU Chou, HE Ping, LIU Changting. Effects of space environment on intestinal flora[J]. Space Medicine & Medical Engineering, 2016, 29(4): 297-300
|
[15] |
SIDDIQUI R, AKBAR N, KHAN N A. Gut microbiome and human health under the space environment[J]. Journal of Applied Microbiology, 2021, 130(1): 14-24 doi: 10.1111/jam.14789
|
[16] |
JIANG P, GREEN S J, CHLIPALA G E, et al. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight[J]. Microbiome, 2019, 7(1): 113 doi: 10.1186/s40168-019-0724-4
|
[17] |
KING S J, MCCOLE D F. Epithelial-microbial diplomacy: escalating border tensions drive inflammation in inflammatory bowel disease[J]. Intestinal Research, 2019, 17(2): 177-191 doi: 10.5217/ir.2018.00170
|
[18] |
YANG J Q, JIANG N, LI Z P, et al. The effects of microgravity on the digestive system and the new insights it brings to the life sciences[J]. Life Sciences in Space Research, 2020, 27: 74-82 doi: 10.1016/j.lssr.2020.07.009
|
[19] |
LI Y J, LIU S, LIU H Y, et al. Dragon's blood regulates Rac1-WAVE2-Arp2/3 signaling pathway to protect rat intestinal epithelial barrier dysfunction induced by simulated microgravity[J]. International Journal of Molecular Sciences, 2021, 22(5): 2722 doi: 10.3390/ijms22052722
|
[20] |
VOORHIES A A, LORENZI H A. The challenge of maintaining a healthy microbiome during long-duration space missions[J]. Frontiers in Astronomy and Space Sciences, 2016, 3: 23
|
[21] |
VOORHIES A A, MARK OTT C, MEHTA S, et al. Study of the impact of long-duration space missions at the international space station on the astronaut microbiome[J]. Scientific Reports, 2019, 9: 9911 doi: 10.1038/s41598-019-46303-8
|
[22] |
SHREINER A B, KAO J Y, YOUNG V B. The gut microbiome in health and in disease[J]. Current Opinion in Gastroenterology, 2015, 31(1): 69-75 doi: 10.1097/MOG.0000000000000139
|
[23] |
STOJANOV S, BERLEC A, ŠTRUKELJ B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease[J]. Microorganisms, 2020, 8(11): 1715 doi: 10.3390/microorganisms8111715
|
[24] |
GARRETT-BAKELMAN F E, DARSHI M, GREEN S J, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight[J]. Science, 2019, 364 (6436): eaau8650 doi: 10.1126/science.aau8650
|
[25] |
SAEI A A, BARZEGARI A. The microbiome: the forgotten organ of the astronaut’s body - probiotics beyond terrestrial limits[J]. Future Microbiology, 2012, 7(9): 1037-1046 doi: 10.2217/fmb.12.82
|
[26] |
LAM V, MOULDER J E, SALZMAN N H, et al. Intestinal microbiota as novel biomarkers of prior radiation exposure[J]. Radiation Research, 2012, 177(5): 573-583 doi: 10.1667/RR2691.1
|
[27] |
KIM Y S, KIM J, PARK S J. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy[J]. Anaerobe, 2015, 33: 1-7 doi: 10.1016/j.anaerobe.2015.01.004
|
[28] |
GOUDARZI M, MAK T D, JACOBS J P, et al. An integrated multi-omic approach to assess radiation injury on the host-microbiome axis[J]. Radiation Research, 2016, 186(3): 219-234 doi: 10.1667/RR14306.1
|
[29] |
LIU X D, ZHOU Y, WANG S Z, et al. Impact of low-dose ionizing radiation on the composition of the gut microbiota of mice[J]. Toxicological Sciences, 2019, 171(1): 258-268 doi: 10.1093/toxsci/kfz144
|
[30] |
LAVRINIENKO A, MAPPES T, TUKALENKO E, et al. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus[J]. The ISME Journal, 2018, 12(11): 2801-2806 doi: 10.1038/s41396-018-0214-x
|
[31] |
NAM Y D, KIM H J, SEO J G, et al. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing[J]. Plos One, 2013, 8(12): e82659 doi: 10.1371/journal.pone.0082659
|
[32] |
CARBONERO F, MAYTA A, BOLEA M, et al. Specific members of the gut microbiota are reliable biomarkers of irradiation intensity and lethality in large animal models of human health[J]. Radiation Research, 2019, 191(1): 107-121
|
[33] |
LI Y C, SUI L, ZHAO H L, et al. Differences in the establishment of gut microbiota and metabolome characteristics between BALB/c and C57BL/6J mice after proton irradiation[J]. Frontiers in Microbiology, 2022, 13: 874702 doi: 10.3389/fmicb.2022.874702
|
[34] |
RABER J, FUENTES ANAYA A, TORRES E R S, et al. Effects of six sequential charged particle beams on behavioral and cognitive performance in B6D2F1 female and male mice[J]. Frontiers in Physiology, 2020, 11: 959 doi: 10.3389/fphys.2020.00959
|
[35] |
FERNANDES A, OLIVEIRA A, GUEDES C, et al. Effect of radium-223 on the gut microbiota of prostate cancer patients: a pilot case series study[J]. Current Issues in Molecular Biology, 2022, 44(10): 4950-4959 doi: 10.3390/cimb44100336
|
[36] |
LI Y Y, ZHANG Y M, WEI K X, et al. Review: effect of gut microbiota and its metabolite SCFAs on radiation-induced intestinal injury[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 577236 doi: 10.3389/fcimb.2021.577236
|
[37] |
WANG Z Q, WANG Q X, WANG X, et al. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy[J]. Journal of Cellular and Molecular Medicine, 2019, 23(5): 3747-3756 doi: 10.1111/jcmm.14289
|
[38] |
WANG A P, LING Z X, YANG Z X, et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study[J]. PLoS One, 2015, 10(5): e0126312 doi: 10.1371/journal.pone.0126312
|
[39] |
FERREIRA M R, ANDREYEV H J N, MOHAMMED K, et al. Microbiota- and Radiotherapy-induced gastrointestinal Side-effects (MARS) study: a large pilot study of the microbiome in acute and late-radiation enteropathy[J]. Clinical Cancer Research, 2019, 25(21): 6487-6500 doi: 10.1158/1078-0432.CCR-19-0960
|
[40] |
CARBONERO F, MAYTA-APAZA A C, YU J Z, et al. A comparative analysis of gut microbiota disturbances in the gottingen minipig and rhesus macaque models of acute radiation syndrome following bioequivalent radiation exposures[J]. Radiation and Environmental Biophysics, 2018, 57(4): 419-426 doi: 10.1007/s00411-018-0759-0
|
[41] |
郑颖, 殷祥昶, 赵阳, 等. 电离辐射对肠道菌群的影响及基于菌群调节的辐射防护研究进展[J]. 中国药理学与毒理学杂志, 2020, 34(7): 549-558
ZHENG Ying, YIN Xiangchang, ZHAO Yang, et al. Effects of ionizing radiation on gut microbiota and radioprotection based on gut microbiota[J]. Chinese Journal of Pharmacology and Toxicology, 2020, 34(7): 549-558
|
[42] |
CHEN Z Y, WANG B, DONG J L, et al. Gut microbiota-derived L-histidine/imidazole propionate axis fights against the radiation-induced cardiopulmonary injury[J]. International Journal of Molecular Sciences, 2021, 22(21): 11436 doi: 10.3390/ijms222111436
|
[43] |
XIAO H W, CUI M, LI Y, et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining Acyl-CoA-binding protein[J]. Microbiome, 2020, 8(1): 69 doi: 10.1186/s40168-020-00845-6
|
[44] |
MORGAN J L L, RITCHIE L E, CRUCIAN B E, et al. Increased dietary iron and radiation in rats promote oxidative stress, induce localized and systemic immune system responses, and alter colon mucosal environment[J]. The FASEB Journal, 2014, 28(3): 1486-1498 doi: 10.1096/fj.13-239418
|
[45] |
LEY R E, TURNBAUGH P J, KLEIN S, et al. Microbial ecology - human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023 doi: 10.1038/4441022a
|
[46] |
GENTILE C L, WEIR T L. The gut microbiota at the intersection of diet and human health[J]. Science, 2018, 362(6416): 776-780 doi: 10.1126/science.aau5812
|
[47] |
MARCHESI J R, ADAMS D H, FAVA F, et al. The gut microbiota and host health: a new clinical frontier[J]. Gut, 2016, 65(2): 330-339 doi: 10.1136/gutjnl-2015-309990
|
[48] |
KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345 doi: 10.1016/j.cell.2016.05.041
|
[49] |
LOUIS P, HOLD G L, FLINT H J. The gut microbiota, bacterial metabolites and colorectal cancer[J]. Nature Reviews Microbiology, 2014, 12(10): 661-672 doi: 10.1038/nrmicro3344
|
[50] |
CUMMINGS J H, POMARE E W, BRANCH W J, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28(10): 1221-1227 doi: 10.1136/gut.28.10.1221
|
[51] |
SMITH E A, MACFARLANE G T. Dissimilatory amino acid metabolism in human colonic bacteria[J]. Anaerobe, 1997, 3(5): 327-337 doi: 10.1006/anae.1997.0121
|
[52] |
TIAN T, ZHAO Y Z, YANG Y, et al. The protective role of short-chain fatty acids acting as signal molecules in chemotherapy- or radiation-induced intestinal inflammation[J]. American Journal of Cancer Research, 2020, 10(11): 3508-3531
|
[53] |
MONTASSIER E, GASTINNE T, VANGAY P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome[J]. Alimentary Pharmacology & Therapeutics, 2015, 42(5): 515-528
|
[54] |
MÁJER F, SHARMA R, MULLINS C, et al. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid[J]. Bioorganic & Medicinal Chemistry, 2014, 22(1): 256-268
|
[55] |
WANG L N, ZHOU Y, WANG X H, et al. Mechanism of asbt (Slc10a2)-related bile acid malabsorption in diarrhea after pelvic radiation[J]. International Journal of Radiation Biology, 2020, 96(4): 510-519 doi: 10.1080/09553002.2020.1707324
|
[56] |
LAURSEN M F, SAKANAKA M, VON BURG N, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut[J]. Nature Microbiology, 2021, 6(11): 1367-1382
|
[57] |
LEVI I, GUREVICH M, PERLMAN G, et al. Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis[J]. Cell Reports Medicine, 2021, 2(4): 100246 doi: 10.1016/j.xcrm.2021.100246
|
[58] |
AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host & Microbe, 2018, 23(6): 716-724
|
[59] |
XIN J Y, WANG J, DING Q Q, et al. Potential role of gut microbiota and its metabolites in radiation-induced intestinal damage[J]. Ecotoxicology and Environmental Safety, 2022, 248: 114341 doi: 10.1016/j.ecoenv.2022.114341
|
[60] |
YU Y Q, LIN X, FENG F Y, et al. Gut microbiota and ionizing radiation-induced damage: is there a link?[J]. Environmental Research, 2023, 229: 115947 doi: 10.1016/j.envres.2023.115947
|
[61] |
WANG Z N, KLIPFELL E, BENNETT B J, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63 doi: 10.1038/nature09922
|
[62] |
TANG W H W, KITAI T, HAZEN S L. Gut microbiota in cardiovascular health and disease[J]. Circulation Research, 2017, 120(7): 1183-1196 doi: 10.1161/CIRCRESAHA.117.309715
|
[63] |
HAUER-JENSEN M, DENHAM J W, ANDREYEV H J N. Radiation enteropathy-pathogenesis, treatment and prevention[J]. Nature Reviews Gastroenterology & Hepatology, 2014, 11(8): 470-479
|
[64] |
MOSCA A, LECLERC M, HUGOT J P. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem[J]. Frontiers in Microbiology, 2016, 7: 455
|
[65] |
CUI M, XIAO H W, LI Y, et al. Faecal microbiota transplantation protects against radiation-induced toxicity[J]. EMBO Molecular Medicine, 2017, 9(4): 448-461 doi: 10.15252/emmm.201606932
|
[66] |
CRAWFORD P A, GORDON J I. Microbial regulation of intestinal radiosensitivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13254-13259
|
[67] |
FERREIRA M R, MULS A, DEARNALEY D P, et al. Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist[J]. The Lancet Oncology, 2014, 15(3): e139-e147 doi: 10.1016/S1470-2045(13)70504-7
|
[68] |
MOUSSA L, USUNIER B, DEMARQUAY C, et al. Bowel radiation injury: complexity of the pathophysiology and promises of cell and tissue engineering[J]. Cell Transplantation, 2016, 25(10): 1723-1746 doi: 10.3727/096368916X691664
|
[69] |
STARZEWSKI J J, PAJĄK J T, PAWEŁCZYK I, et al. The radiation-induced changes in rectal mucosa: hyperfractionated vs. hypofractionated preoperative radiation for rectal cancer[J]. International Journal of Radiation Oncology Biology Physics, 2006, 64(3): 717-724 doi: 10.1016/j.ijrobp.2005.08.009
|
[70] |
GRÉMY O, BENDERITTER M, LINARD C. Acute and persisting Th2-like immune response after fractionated colorectal γ-irradiation[J]. World Journal of Gastroenterology, 2008, 14(46): 7075-7085 doi: 10.3748/wjg.14.7075
|
[71] |
FRANCOIS A, MILLIAT F, GUIPAUD O, et al. Inflammation and immunity in radiation damage to the gut mucosa[J]. Biomed Research International, 2013, 2013: 123241
|
[72] |
BLIRANDO K, MILLIAT F, MARTELLY I, et al. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice[J]. The American Journal of Pathology, 2011, 178(2): 640-651 doi: 10.1016/j.ajpath.2010.10.003
|
[73] |
DUERKOP B A, VAISHNAVA S, HOOPER L V. Immune responses to the microbiota at the intestinal mucosal surface[J]. Immunity, 2009, 31(3): 368-376 doi: 10.1016/j.immuni.2009.08.009
|
[74] |
NEUFELD K M, KANG N, BIENENSTOCK J, et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice[J]. Neurogastroenterology & Motility, 2011, 23(3): 255-e119
|
[75] |
WANG S, HUANG X F, ZHANG P, et al. Dietary teasaponin ameliorates alteration of gut microbiota and cognitive decline in diet-induced obese mice[J]. Scientific Reports, 2017, 71(1): 12203
|
[76] |
PARASHAR A, UDAYABANU M. Gut microbiota: implications in Parkinson’s disease[J]. Parkinsonism & Related Disorders, 2017, 38: 1-7
|
[77] |
SONG C, GAO X, SONG W, et al. Simulated spatial radiation impacts learning and memory ability with alterations of neuromorphology and gut microbiota in mice[J]. RSC Advances, 2020, 10(27): 16196-16208 doi: 10.1039/D0RA01017K
|
[78] |
NOOR R, NAZ A, MANIHA S M, et al. Microorganisms and cardiovascular diseases: importance of gut bacteria[J]. Frontiers in Bioscience-Landmark, 2021, 26(5): 22-28 doi: 10.52586/4921
|
[79] |
MULLER A M, FISCHER A, KATUS H, et al. Mouse models of autoimmune diseases-autoimmune myocarditis[J]. Current Pharmaceutical Design, 2015, 21(18): 2498-2512 doi: 10.2174/1381612821666150316123711
|
[80] |
CONNOLLY S E, BENACH J L. The versatile roles of antibodies in Borrelia infections[J]. Nature Reviews Microbiology, 2005, 3(5): 411-420 doi: 10.1038/nrmicro1149
|
[81] |
HILLMAN E T, LU H, YAO T M, et al. Microbial ecology along the gastrointestinal tract[J]. Microbes and Environments, 2017, 32(4): 300-313 doi: 10.1264/jsme2.ME17017
|
[82] |
HUSE S M, DETHLEFSEN L, HUBER J A, et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing[J]. PLoS Genetics, 2008, 4(11): e1000255 doi: 10.1371/journal.pgen.1000255
|
[83] |
JIE Z Y, XIA H H, ZHONG S L, et al. The gut microbiome in atherosclerotic cardiovascular disease[J]. Nature Communications, 2017, 8(1): 845 doi: 10.1038/s41467-017-00900-1
|
[84] |
ANKER S D, EGERER K R, VOLK H D, et al. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure[J]. The American Journal of Cardiology, 1997, 79(10): 1426-1430 doi: 10.1016/S0002-9149(97)00159-8
|
[85] |
ZHAO L B, XING C Y, SUN W Q, et al. Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition[J]. Cancer Chemotherapy and Pharmacology, 2018, 82(6): 999-1008
|
[86] |
YANG T, SANTISTEBAN M M, RODRIGUEZ V, et al. Gut dysbiosis is linked to hypertension[J]. Hypertension, 2015, 65(6): 1331-1340 doi: 10.1161/HYPERTENSIONAHA.115.05315
|
[87] |
QIN J J, LI Y R, CAI Z M, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418): 55-60 doi: 10.1038/nature11450
|
[88] |
PLUZNICK J L, PROTZKO R J, GEVORGYAN H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(11): 4410-4415
|
[89] |
URIBE-HERRANZ M, RAFAIL S, BEGHI S, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response[J]. Journal of Clinical Investigation, 2020, 130(1): 466-479
|
[90] |
ZHANG Q, RAN X, HE Y, et al. Acetate downregulates the activation of NLRP3 inflammasomes and attenuates lung injury in neonatal mice with bronchopulmonary dysplasia[J]. Frontiers in Pediatrics, 2021, 8: 595157 doi: 10.3389/fped.2020.595157
|
[91] |
WYPYCH T P, PATTARONI C, PERDIJK O, et al. Microbial metabolism of L-tyrosine protects against allergic airway inflammation[J]. Nature Immunology, 2021, 22(3): 279-286 doi: 10.1038/s41590-020-00856-3
|
[92] |
LI W J, LU L N, LIU B, et al. Effects of phycocyanin on pulmonary and gut microbiota in a radiation-induced pulmonary fibrosis model[J]. Biomedicine & Pharmacotherapy, 2020, 132: 110826
|