Citation: | KONG Xing, LIU Erxiao, CHEN Fengju, QIAO Lei. Application of Deep Clustering Algorithm in Target Echo Classification of SuperDARN Radar (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 806-817 doi: 10.11728/cjss2024.05.2023-0136 |
[1] |
KUSTOV A V, PAPITASHVILI V O, SOFKO G J, et al. Dayside ionospheric plasma convection, electric fields, and field‐aligned currents derived from the SuperDARN radar observations and predicted by the IZMEM model[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A11): 24057-24067 doi: 10.1029/97JA02309
|
[2] |
MARCUCCI M F, COCO I, MASSETTI S, et al. Echo occurrence in the southern polar ionosphere for the SuperDARN Dome C East and Dome C North radars[J]. Polar Science, 2021, 28: 100684 doi: 10.1016/j.polar.2021.100684
|
[3] |
GREENWALD R A. History of the Super Dual Auroral Radar Network (SuperDARN)-I: pre-SuperDARN developments in high frequency radar technology for ionospheric research and selected scientific results[J]. History of Geo- and Space Sciences, 2021, 12(1): 77-93 doi: 10.5194/hgss-12-77-2021
|
[4] |
CHISHAM G, PINNOCK M. Assessing the contamination of SuperDARN global convection maps by non-F-region backscatter[J]. Annales Geophysicae, 2002, 20(1): 13-28 doi: 10.5194/angeo-20-13-2002
|
[5] |
ULLAH S, LI H L, RAUF A, et al. Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region[J]. Earth and Planetary Physics, 2021, 5(2): 196-204 doi: 10.26464/epp2021016
|
[6] |
VILLAIN J P, GREENWALD R A, BAKER K B, et al. HF radar observations of E region plasma irregularities produced by oblique electron streaming[J]. Journal of Geophysical Research: Space Physics, 1987, 92(A11): 12327-12342 doi: 10.1029/JA092iA11p12327
|
[7] |
BARTHES L, ANDRÉ R, CERISIER J C, et al. Separation of multiple echoes using a high-resolution spectral analysis for SuperDARN HF radars[J]. Radio Science, 1998, 33(4): 1005-1017 doi: 10.1029/98RS00714
|
[8] |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280 doi: 10.1109/TAP.1986.1143830
|
[9] |
GREENWALD R A, BAKER K B, DUDENEY J R, et al. Darn/superdarn: a global view of the dynamics of high-latitude convection[J]. Space Science Reviews, 1995, 71(71): 761-796
|
[10] |
PONOMARENKO P V, WATERS C L, MENK F W. Factors determining spectral width of HF echoes from high latitudes[J]. Annales Geophysicae, 2007, 25(3): 675-687 doi: 10.5194/angeo-25-675-2007
|
[11] |
PONOMARENKO P V, WATERS C L, MENK F W. Effects of mixed scatter on SuperDARN convection maps[J]. Annales Geophysicae, 2008, 26(6): 1517-1523 doi: 10.5194/angeo-26-1517-2008
|
[12] |
BLANCHARD G T, SUNDEEN S, BAKER K B. Probabilistic identification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics[J]. Radio Science, 2009, 44(5): RSSO12
|
[13] |
RIBEIRO A J, RUOHONIEMI J M, BAKER J B H, et al. A new approach for identifying ionospheric backscatter in midlatitude SuperDARN HF radar observations[J]. Radio Science, 2011, 46(4): RS4011
|
[14] |
BURRELL A G, MILAN S E, PERRY G W, et al. Automatically determining the origin direction and propagation mode of high-frequency radar backscatter[J]. Radio Science, 2015, 50(12): 1225-1245 doi: 10.1002/2015RS005808
|
[15] |
CHANG J F, LU Y, XUE P, et al. Iterative clustering pruning for convolutional neural networks[J]. Knowledge-Based Systems, 2023, 265: 110386 doi: 10.1016/j.knosys.2023.110386
|
[16] |
CHUI K T. Driver stress recognition for smart transportation: applying multiobjective genetic algorithm for improving fuzzy c-means clustering with reduced time and model complexity[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100668 doi: 10.1016/j.suscom.2022.100668
|
[17] |
DUTTA R, DAS N, MAJUMDER M, et al. Aspect based sentiment analysis using multi‐criteria decision‐making and deep learning under COVID‐19 pandemic in India[J]. CAAI Transactions on Intelligence Technology, 2023, 8(1): 219-234 doi: 10.1049/cit2.12144
|
[18] |
WAGNER F H, DALAGNOL R, SÁNCHEZ A H, et al. K-textures, a self-supervised hard clustering deep learning algorithm for satellite image segmentation[J]. Frontiers in Environmental Science, 2022, 10: 946729 doi: 10.3389/fenvs.2022.946729
|
[19] |
ANITHA T, LATHA G P L, PRASAD M S. A proficient adaptive K-means based brain tumor segmentation and detection using deep learning scheme with PSO[J]. Journal of Computational Science & Intelligent Technologies, 2020, 1(3): 9-14
|
[20] |
刘二小, 胡红桥, 刘瑞源, 等. 中山站高频雷达回波的日变化特征及地磁活动的影响[J]. 地球物理学报, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024
LIU E X, HU H Q, LIU R Y, et al. Diurnal variation of the HF radar echoes at Zhongshan Station and the influence of geomagnetic activity[J]. Chinese Journal of Geophysics, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024
|
[21] |
RIBEIRO A J, RUOHONIEMI J M, PONOMARENKO P V, et al. A comparison of SuperDARN ACF fitting methods[J]. Radio Science, 2013, 48(3): 274-282 doi: 10.1002/rds.20031
|
[22] |
KIM Y, HEILAND J. Convolutional autoencoders, clustering and POD for low-dimensional parametrization of navier-stokes equations[OL]. arXiv preprint arXiv: 2302.01278, 2023
|
[23] |
HINTON G E, ZEMEL R S. Autoencoders, minimum description length and Helmholtz free energy[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver: Morgan Kaufmann Publishers Inc. , 1993
|
[24] |
HU H Q, LIU E X, LIU R Y, et al. Statistical characteristics of ionospheric backscatter observed by SuperDARN Zhongshan radar in Antarctica[J]. Advances in Polar Science, 2013, 24(1): 19-31
|