Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
KONG Xing, LIU Erxiao, CHEN Fengju, QIAO Lei. Application of Deep Clustering Algorithm in Target Echo Classification of SuperDARN Radar (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 806-817 doi: 10.11728/cjss2024.05.2023-0136
Citation: KONG Xing, LIU Erxiao, CHEN Fengju, QIAO Lei. Application of Deep Clustering Algorithm in Target Echo Classification of SuperDARN Radar (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 806-817 doi: 10.11728/cjss2024.05.2023-0136

Application of Deep Clustering Algorithm in Target Echo Classification of SuperDARN Radar

doi: 10.11728/cjss2024.05.2023-0136 cstr: 32142.14.cjss2024.05.2023-0136
  • Received Date: 2023-11-23
  • Rev Recd Date: 2023-12-21
  • Available Online: 2024-01-31
  • SuperDARN radar target echoes usually contain echoes of various types of scattering, such as ionospheric irregularities, ground/sea scatter echoes, polar mesosphere summer echoes and meteor trail echoes. The ionospheric echoes collected by SuperDARN radar are used to map the ionospheric convection to study the large-scale dynamics of the magnetosphere-ionospheric system, which is of great significance for space weather observation and exploration. In general, the scattered ionospheric echoes received by SuperDARN are often mixed with the scattered echoes from the ground or the sea, resulting in inaccurate ionospheric convection maps. Therefore, cluster analysis of SuperDARN target echoes is of great significance. Traditionally, ground/sea scattering is determined by the lower threshold of the combination of velocity and spectral width, but the scope of use of this method is limited, and there is ambiguity for the echoes in the mid-latitude region. In order to avoid the influence of latitude conditions and reduce the omission of useful information in the data, multiple data features of the radar target echo are collected as much as possible, such as line-of-sight Doppler velocity, the spectral width, backscatter power and the elevation angle of arrival. In this paper, the graph embedding deep clustering algorithm based on autoencoder network is applied to SuperDARN target echo data for the first time, and SuperDARN echo data is effectively classified. In addition, two different types of machine learning clustering algorithms are introduced to compare with this model. The deep clustering model, traditional classification algorithm and machine learning clustering algorithm are applied to the same echo data set, and the clustering results of different clustering algorithms are compared. The application of different clustering models on sample data sets and the evaluation of clustering indexes show that the deep clustering algorithm can capture the deep structural features of the echo data, effectively compress and reduce the dimensionality of the high-dimensional data set, make full use of the useful information in the data set, and improve the precision of the target echo data clustering of SuperDARN radar.

     

  • loading
  • [1]
    KUSTOV A V, PAPITASHVILI V O, SOFKO G J, et al. Dayside ionospheric plasma convection, electric fields, and field‐aligned currents derived from the SuperDARN radar observations and predicted by the IZMEM model[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A11): 24057-24067 doi: 10.1029/97JA02309
    [2]
    MARCUCCI M F, COCO I, MASSETTI S, et al. Echo occurrence in the southern polar ionosphere for the SuperDARN Dome C East and Dome C North radars[J]. Polar Science, 2021, 28: 100684 doi: 10.1016/j.polar.2021.100684
    [3]
    GREENWALD R A. History of the Super Dual Auroral Radar Network (SuperDARN)-I: pre-SuperDARN developments in high frequency radar technology for ionospheric research and selected scientific results[J]. History of Geo- and Space Sciences, 2021, 12(1): 77-93 doi: 10.5194/hgss-12-77-2021
    [4]
    CHISHAM G, PINNOCK M. Assessing the contamination of SuperDARN global convection maps by non-F-region backscatter[J]. Annales Geophysicae, 2002, 20(1): 13-28 doi: 10.5194/angeo-20-13-2002
    [5]
    ULLAH S, LI H L, RAUF A, et al. Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region[J]. Earth and Planetary Physics, 2021, 5(2): 196-204 doi: 10.26464/epp2021016
    [6]
    VILLAIN J P, GREENWALD R A, BAKER K B, et al. HF radar observations of E region plasma irregularities produced by oblique electron streaming[J]. Journal of Geophysical Research: Space Physics, 1987, 92(A11): 12327-12342 doi: 10.1029/JA092iA11p12327
    [7]
    BARTHES L, ANDRÉ R, CERISIER J C, et al. Separation of multiple echoes using a high-resolution spectral analysis for SuperDARN HF radars[J]. Radio Science, 1998, 33(4): 1005-1017 doi: 10.1029/98RS00714
    [8]
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280 doi: 10.1109/TAP.1986.1143830
    [9]
    GREENWALD R A, BAKER K B, DUDENEY J R, et al. Darn/superdarn: a global view of the dynamics of high-latitude convection[J]. Space Science Reviews, 1995, 71(71): 761-796
    [10]
    PONOMARENKO P V, WATERS C L, MENK F W. Factors determining spectral width of HF echoes from high latitudes[J]. Annales Geophysicae, 2007, 25(3): 675-687 doi: 10.5194/angeo-25-675-2007
    [11]
    PONOMARENKO P V, WATERS C L, MENK F W. Effects of mixed scatter on SuperDARN convection maps[J]. Annales Geophysicae, 2008, 26(6): 1517-1523 doi: 10.5194/angeo-26-1517-2008
    [12]
    BLANCHARD G T, SUNDEEN S, BAKER K B. Probabilistic identification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics[J]. Radio Science, 2009, 44(5): RSSO12
    [13]
    RIBEIRO A J, RUOHONIEMI J M, BAKER J B H, et al. A new approach for identifying ionospheric backscatter in midlatitude SuperDARN HF radar observations[J]. Radio Science, 2011, 46(4): RS4011
    [14]
    BURRELL A G, MILAN S E, PERRY G W, et al. Automatically determining the origin direction and propagation mode of high-frequency radar backscatter[J]. Radio Science, 2015, 50(12): 1225-1245 doi: 10.1002/2015RS005808
    [15]
    CHANG J F, LU Y, XUE P, et al. Iterative clustering pruning for convolutional neural networks[J]. Knowledge-Based Systems, 2023, 265: 110386 doi: 10.1016/j.knosys.2023.110386
    [16]
    CHUI K T. Driver stress recognition for smart transportation: applying multiobjective genetic algorithm for improving fuzzy c-means clustering with reduced time and model complexity[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100668 doi: 10.1016/j.suscom.2022.100668
    [17]
    DUTTA R, DAS N, MAJUMDER M, et al. Aspect based sentiment analysis using multi‐criteria decision‐making and deep learning under COVID‐19 pandemic in India[J]. CAAI Transactions on Intelligence Technology, 2023, 8(1): 219-234 doi: 10.1049/cit2.12144
    [18]
    WAGNER F H, DALAGNOL R, SÁNCHEZ A H, et al. K-textures, a self-supervised hard clustering deep learning algorithm for satellite image segmentation[J]. Frontiers in Environmental Science, 2022, 10: 946729 doi: 10.3389/fenvs.2022.946729
    [19]
    ANITHA T, LATHA G P L, PRASAD M S. A proficient adaptive K-means based brain tumor segmentation and detection using deep learning scheme with PSO[J]. Journal of Computational Science & Intelligent Technologies, 2020, 1(3): 9-14
    [20]
    刘二小, 胡红桥, 刘瑞源, 等. 中山站高频雷达回波的日变化特征及地磁活动的影响[J]. 地球物理学报, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024

    LIU E X, HU H Q, LIU R Y, et al. Diurnal variation of the HF radar echoes at Zhongshan Station and the influence of geomagnetic activity[J]. Chinese Journal of Geophysics, 2012, 55(9): 3066-3076 doi: 10.6038/j.issn.0001-5733.2012.09.024
    [21]
    RIBEIRO A J, RUOHONIEMI J M, PONOMARENKO P V, et al. A comparison of SuperDARN ACF fitting methods[J]. Radio Science, 2013, 48(3): 274-282 doi: 10.1002/rds.20031
    [22]
    KIM Y, HEILAND J. Convolutional autoencoders, clustering and POD for low-dimensional parametrization of navier-stokes equations[OL]. arXiv preprint arXiv: 2302.01278, 2023
    [23]
    HINTON G E, ZEMEL R S. Autoencoders, minimum description length and Helmholtz free energy[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver: Morgan Kaufmann Publishers Inc. , 1993
    [24]
    HU H Q, LIU E X, LIU R Y, et al. Statistical characteristics of ionospheric backscatter observed by SuperDARN Zhongshan radar in Antarctica[J]. Advances in Polar Science, 2013, 24(1): 19-31
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article Views(465) PDF Downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return