Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
WANG Jiewei, LIU Kaixuan, YANG Yi, LÜ Zheng. Research Progress of Rankine Cycle System for Space Nuclear Power System (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 884-893 doi: 10.11728/cjss2024.05.2023-0141
Citation: WANG Jiewei, LIU Kaixuan, YANG Yi, LÜ Zheng. Research Progress of Rankine Cycle System for Space Nuclear Power System (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 884-893 doi: 10.11728/cjss2024.05.2023-0141

Research Progress of Rankine Cycle System for Space Nuclear Power System

doi: 10.11728/cjss2024.05.2023-0141 cstr: 32142.14.cjss2024.05.2023-0141
  • Received Date: 2023-12-01
  • Rev Recd Date: 2024-03-19
  • Available Online: 2024-05-11
  • The space nuclear power Rankine cycle is a research hotspot in the field of space nuclear reactor power supply because of its high thermoelectric conversion efficiency, small waste heat radiation area and flexible power change. In this paper, based on the in-depth analysis of the development history of space nuclear power Rankine cycle at home and abroad and the research progress at home and abroad, the research progress of the workmass of space nuclear power Rankine cycle is sorted out, and the selection criteria and principles of workmass are summarized. In this paper, a detailed review of the design schemes of space nuclear energy Rankine cycle systems of different power levels is carried out, summarizing the reactor design, the selection of industrial materials for each circuit, the design of Rankine cycle power, the design of key components and other aspects of each system scheme, and it is found that the main research directions include the research on the characteristics of the industrial materials, the research on the key components of the Rankine cycle, the design of the reactor core, etc. The key technical issues to be further studied include research on new metal materials, high-performance key equipment design and ground integration program. The results of the analyses are intended to provide a certain reference for the design and research of the Rankine cycle for space nuclear energy in China in the future.

     

  • loading
  • [1]
    苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016

    SU Zhuting, YANG Jicai, KE Guotu. Space Nuclear Power[M]. Shanghai: Shanghai Jiao Tong University Press, 2016
    [2]
    GUHARKIN H E. Space Nuclear Power Sources “Romanska” and “Yenisei” with Thermoelectric Conversion and Thermionic Conversion[M]. LIU Shu, ZHANG Ling, SONG Chenwei, trans. Beijing: China Atomic Energy Publishing House, 2016: 61-66
    [3]
    马世俊, 杜辉, 周继时, 等. 核动力航天器发展历程(下)[J]. 中国航天, 2014(5): 32-35

    MA Shijun, DU Hui, ZHOU Jishi, et al. Development history of nuclear powered spacecraft (part 2)[J]. Aerospace China, 2014(5): 32-35
    [4]
    WANG C L, LIU T C, TANG S M, et al. Thermal–hydraulic analysis of space nuclear reactor TOPAZ-II with modified RELAP5[J]. Nuclear Science and Techniques, 2019, 30(1): 12 doi: 10.1007/s41365-018-0537-3
    [5]
    STAUB D W. SNAP Programs: Summary Report[R]. Canoga Park: Atomics International Division, 1973
    [6]
    PITTS J H, JESTER M H L. Rankine Cycle Systems Studies for Nuclear Space Power[R]. Livermore: Lawrence Radiation Laboratory, 1968
    [7]
    MASON L S, BLOOMFIELD H S, HAINLEY D C. SP-100 power system conceptual design for lunar base applications[C]//6th Symposium on Space Nuclear Power Systems. Albuquerque: Institute for Space Nuclear Power Studies, 1989
    [8]
    LAHEY JR R T, DHIR V. Research in Support of the Use of Rankine Cycle Energy Conversion Systems for Space Power and Propulsion[R]. Hanover: NASA Center for Aerospace Information, 2004
    [9]
    张震. 空间核动力金属朗肯循环动态热电转换系统仿真分析及优化[D]. 哈尔滨: 哈尔滨工业大学, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.003978

    ZHANG Zhen. Simulation Analysis and Optimization of Metal Rankine Cycle Dynamic Thermoelectric Conversion System for Space Nuclear Power[D]. Harbin: Harbin Institute of Technology, 2021. DOI: 10.27061/d.cnki.ghgdu. 2021.003978
    [10]
    程献伟. 空间核能液态金属朗肯循环的热力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2017

    CHENG Xianwei. Thermodynamic Analysis of Space Nuclear Power System Based on Liquid Metal Rankine Cycle[D]. Harbin: Harbin Institute of Technology, 2017
    [11]
    JARRETT A A. SNAP 2: Summary Report[R]. Canoga Park: Atomics International Division, 1973
    [12]
    许春阳. 俄罗斯兆瓦级空间核动力装置研发进展(内部报告)[R]. 北京: 中国核科技信息与经济研究院, 2012

    XU Chunyang. Research and Development Progress of Russian Megawatt Space Nuclear Power Plant (Internal Report)[R]. Beijing: China Institute of Nuclear Information & Economics, 2012
    [13]
    YOUNG H C, CLARK D L, GRINDELL A G. Comparison of Boiler Feed Pumps for Cesium and Potassium Rankine Cycle Systems[R]. Oak Ridge: Oak Ridge National Laboratory, 1968
    [14]
    FRAAS A P, BURTON D W, LAVERNE M E, et al. Design Comparison of Cesium and Potassium Vapor Turbine-Generator Units for Space Power Plants[R]. Oak Ridge: Oak Ridge National Laboratory, 1969
    [15]
    YOUNG H C, GRINDELL A G. Summary of Design and Test Experience with Cesium and Potassium Components and Systems for Space Power Plants[R]. Oak Ridge: Oak Ridge National Laboratory, 1967
    [16]
    THUR G M. SNAP-8 power conversion system assessment[C]//Intersociety Energy Conversion Engineering Conference. Boulder: National Aeronautics and Space Administration, 1968
    [17]
    GERTSMA L G, THOLLOT P A, MEDWID D W. Review of the double containment Ta/SS SNAP-8 boiler[C]//Intersociety Energy Conversion Engineering Conference. Boulder: National Aeronautics and Space Administration, 1968
    [18]
    马世俊, 唐玉华, 朱安文, 等. 空间核动力的进展[M]. 北京: 中国宇航出版社, 2019

    MA Shijun, TANG Yuhua, ZHU Anwen, et al. Progress in Space Nuclear Power[M]. Beijing: China Aerospace Publishing House, 2019
    [19]
    YODER G L, CARBAJO J J, MURPHY R W, et al. Potassium Rankine cycle system design study for space nuclear electric propulsion[C]//3rd International Energy Conversion Engineering Conference. San Francisco: AIAA, 2005: 5637
    [20]
    HELLER J A, MOSS T A, BARNA G J. Study of a 300-Kilowatt Rankine-Cycle Advanced Nuclear-Electric Space-Power System[R]. Washington: National Aeronautics and Space Administration, 1969
    [21]
    MILLER J V. Characteristics of A Space-Power Nuclear Reactor with Considerations for Venting or Containing Gaseous Fission Products[R]. Washington: National Aeronautics and Space Administration, 1968
    [22]
    VARLJEN T C. The Transport of Atomized Drops in Wet Vapor Turbines[R]. Pittsburgh: Westinghouse Astronuclear Laboratory, 1968
    [23]
    RACKLEY R A. Potassium Turboalternator (KTA) Preliminary Design Study: Volume III-Phase II KTA Final Design[R]. Washington: National Aeronautics and Space Administration, 1970
    [24]
    LONGHURST G R, HARVEGO E A, SCHNITZLER B G, et al. Multi Megawatt Power System Analysis Report[R]. Idaho Falls: Idaho National Laboratory, 2001
    [25]
    PITTS J H, WALTER C E. Conceptual design of a 10-MWe nuclear Rankine system for space power[J]. Journal of Spacecraft and Rockets, 1970, 7(3): 259-265 doi: 10.2514/3.29917
    [26]
    WERNER R W, CARLSON G A. Heat Pipe Radiator for A 50-MWt Space Power Plant[R]. Livermore: Lawrence Radiation Laboratory, 1967
    [27]
    LONGHURST G R, SCHNITZLER B G, PARKS B T. Multi-Megawatt Power system trade study[J]. AIP Conference Proceedings, 2002, 608(1): 1075-1083
    [28]
    Morgon R. Comparison of high power nuclear systems for space[C]//Proceedings of the 18th Intersociety Energy Conversion Conference, Orlando, FL, USA. 1983: 21-26
    [29]
    TRUSCELLO V C, RUTGER L L. The SP‐100 power system[J]. AIP Conference Proceedings, 1992, 246(1): 1-23
    [30]
    中国核科技信息与经济研究院. 世界反应堆大全: RAPID星表反应堆电源[M]. 北京: 原子能出版社, 2015: 152

    China Institute of Nuclear Technology Information and Economics. World Reactor Encyclopedia: RAPID Catalogue Reactor Power Supply[M]. Beijing: Atomic Energy Publishing House, 2015: 152
    [31]
    张震, 张昊春, 张冬, 等. 兆瓦级空间核电源碱金属朗肯循环热电转换系统设计[J]. 上海航天(中英文), 2022, 39(2): 76-84 doi: 10.19328/j.cnki.2096-8655.2022.02.012

    ZHANG Zhen, ZHANG Haochun, ZHANG Dong, et al. Design of alkali metal Rankine cycle thermoelectric conversion system for megawatt space nuclear plant[J]. Aerospace Shanghai (Chinese & English), 2022, 39(2): 76-84 doi: 10.19328/j.cnki.2096-8655.2022.02.012
    [32]
    张昊春, 程献伟, 余红星, 等. 空间核能液态金属朗肯循环的热力学性能分析[J]. 工程热物理学报, 2018, 39(2): 242-248

    ZHANG Haochun, CHENG Xianwei, YU Hongxing, et al. Thermodynamic analysis of space nuclear power system based on liquid metal Rankine cycle[J]. Journal of Engineering Thermophysics, 2018, 39(2): 242-248
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article Views(766) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return